EasyTalk User Guide

Getting Started

Links to important topics are listed below:

e Demos - If you're new to EasyTalk, check out the demos to get a taste of things! :smile:

o Tutorials - For some interesting/useful tutorials to learn about easy talk and get started.

e The Node Editor - If you want to learn about the node editor and its features.

e Node Types - Provides explanations of various EasyTalk node types.

¢ Dialogue Controllers - Explains Dialogue Controllers and how they are used to control dialogue
playback.

o Dialogue UI - Provides a breakdown of the EasyTalk Dialogue Ul system.

o API / Code Reference Documentation - An API reference for the EasyTalk runtime code.

e Online User Guide

« Join the Discord! - We would love to see what you've made with EasyTalk! The discord community
is also a place where you can ask questions, recommend features, or report bugs!

Demos

To check out the demo scenes included with EasyTalk, just go to the ‘Okitoki Games/EasyTalk’
folder and double-click on the appropriate demo package for the render pipeline type you are using,
then import the asssets for the demo.

Pipeline Type Demo Package Name

Built-In Demo Built In
URP Demo_ URP
HDRP Demo HDRP

Demo 1

Demo 1 showcases some of the various ways that EasyTalk can be set up and used in games. The
features demonstrated include:

o Playing/Manipulating Dialogue in a cutscene (Timeline)
e Screen-Space Dialogue
o Speech Bubbles (World-Space dialogue)
e Area Dialogue Controllers
— Activation of Dialogue on Entry
— Prompt on Entry
e Prompt implementation

https://okitoki.games/easytalk/api/annotated.html
https://okitoki.games/easytalk
https://discord.gg/wERdGzzfEH

Press | to change Language

Jimmy uses the screen-space
display, but he uses a conversation

display with the , 'icon’.
Press | to goto the next tip, or - to turn tips onfoff.
I .

Jimmy Continue. ..

-

(a) This is so fun! I've onLy been here for 3 days but I Loue rocks
and I Love burgers! This is great!

A
©
.

Figure 1: Demo 1

¢ Dialogue Options
e Variable Injection
¢ Dynamic Dialogue logic
— Changing output based on prior choices
— Randomized dialogue paths
— Dialogue repition prevention
 Localization/Language change
o Infinitely Looping Dialogue
e Character Icon Implementation
¢ Animated Dialogue Text
o Using multiple Dialogue Displays
¢ Dialogue Events
¢ Enabling and disabling player controls

Demo 2

This demo is a barebones screen-space dialogue setup.

Demo 3

This demo shows how speech bubbles, area dialogue controllers, and multiple screen-space and world-
space dialogue displays can be set up in different ways. It also demonstrates playing audio and playing
dialogue in an infinite loop.

JIARY

THIS IS AW EXAHPLE OF A
CONVERSATION AN WPC
MIGHT HAVE. IT CAN EASILY
BE NODIFIED TO HEET
YOUR OWN 5TYLE HEEDS
AND WHATHOT.

sh

(o]

UERGERTT

Figure 2: Demo 2

Figure 3: Demo 3

r in the Ul, as well a

Continue

[s]

itinue. ..

ptions when

Tutorials
Tutorials
Check out the Getting Started tutorial at https://youtu.be/ahqgz3Ynapk to get a head start.

You can find other EasyTalk tutorials on our main channel page at https://www.youtube.com/channe
1/UC5ZQlx6Ba3lVImv16zYbFlg

EasyTalk Node Editor

Hotkeys and Controls

The node editor provides many different hotkeys/keyboard shortcuts and controls to make editing
Dialogue assets quick and easy.

Viewport Controls

Panning

S CONVEREATION

\ CONVERSATION

Figure 4: Panning

To pan the node view, you can either middle mouse press and hold, then drag your mouse, or you can
hold Ctrl and Left Mouse on the grid and drag.

Zooming

https://youtu.be/ahqgz3Ynapk
https://www.youtube.com/channel/UC5ZQlx6Ba3lVImvl6zYbFlg
https://www.youtube.com/channel/UC5ZQlx6Ba3lVImvl6zYbFlg

\ % CONVERSATION

Figure 5: Zooming in/out

You can zoom in and out by scrolling the middle mouse wheel or using Ctrl+ and Ctrl-.

Resizing

Most types of nodes can be resized by hovering the mouse over their edge and clicking and dragging to
resize them.

Moving

If you click and hold the mouse in the title area or an empty area of a node, then you can drag the
node to move it around.

Selecting

To select nodes, you can click on the title area or an empty area of a node. To select multiple nodes,
just hold the Shift key when clicking.

You can also select nodes by dragging a selection rectangle around them. Just click on the background
grid and drag a rectangle around the nodes you want to select.

@® CONVERSATION

Choose/Enter Character...

Enter Conversation Text...

Figure 6: Resizing Nodes

Enter Option Text...

Enter Option Text...

Figure 7: Moving Nodes

% CONVERSATIOM

Fou'll vuu the nuxt line after
this In § seconds,

\ % CONVERSATION

Wkt complated,

Figure 8: Selecting Nodes

"8 COMVERSATION

You'll sun the nuxt line after
this In § seconds.

\ % CONVERSATION

Wit eompleted.

Figure 9: Deselecting Nodes

Deselecting

To deselect nodes, just click on the background grid. Alternatively, you can hold the Shift key and
drag a deselection rectangle around the nodes you want to deselect.

Quick-Create Wheel

The Quick-Create wheel can be accessed by holding the Alt key with the mouse over the node view.
If you hover over and release Alt, or click on any of the buttons in the quick-create wheel, you can
quickly create nodes, rather than having to create them via the Create menu.

STRING VARIABLE

BOOL VARIABLE

FLOAT VARIABLE
INT VARIABLE

Figure 10: The Quick-Create Wheel

Hotkeys / Keyboard Shortcuts
File Shortcuts

Action Shortcut Description

New File Ctrl + N Creates a new Dialogue asset
file.

Open File Ctrl + O Launches a file browser to select

a Dialogue asset file to open.

Action Shortcut Description

Save File Ctrl + S Saves the current Dialogue
asset.

View Shortcuts

Action Shortcut Description

Find Ctrl + F Shows the Find tool for
searching for nodes.

Zoom In Ctrl + Zooms in.

Zoom Out Ctrl - Zooms out.

View Selected Ctrl + X Pans and zooms to view the
currently selected nodes.

View All Ctrl + Shift + X Pans and zooms to view all
nodes.

Edit Shortcuts

Action Shortcut Description

Undo Ctrl + Z Undo the previous action.

Redo Ctrl + Y Redo the previous action.

Copy Ctrl + C Copy the currently selected nodes.
Paste Ctrl + V Paste a copy of the copied selection.
Delete DELETE Delete the currently selected nodes.

Select Shortcuts

Action Shortcut Description

Select All Ctrl + A Select all nodes.

Deselect All Shift + A Deselect all nodes.

Invert Selection Ctrl + I Deselects all selected nodes, and
selects all nodes which were not
selected.

Nodes

Common-Nodes

Entry Nodes

Every Dialogue asset must contain at least 1 entry node. Entry nodes provide entry points for the
dialogue to start playback from. You can have an unlimited number of entry nodes, but each should
have a unique ID, which you can assign by typing into the text field.

Figure 11: Entry Node

Whenever you call PlayDialogue() on a Dialogue Controller, you can optionally pass in the Entry Point
ID to start playback from that entry node.

If you have multiple entry nodes but you don’t define IDs for them, which one is used as the playback
entry point will be arbitrary.

Each entry node has one dialogue flow output.

Exit Nodes

Exit nodes are used to signal that dialogue playback should be exited, ending the current conversation.
Each exit node can have an ID assigned to it by typing into the text field of the node. These IDs do
not have to be unique, but are used to tell Dialogue Listeners where the dialogue exited.

Each exit node has one dialogue flow input.

Conversation Nodes

Conversation nodes allow you to write lines of dialogue to display to the player.

Each conversation node includes a field for entering the name of the character who is speaking the lines
of dialogue, as well as fields for each line of dialogue. Audio files may also be dragged and dropped
onto the speaker icon to set the audio which will be played along with the dialogue for each line.

import addButton from °/assets/add_item_button.png’; import removeButton from °/as-
sets/remove__item_ button.png’;

10

Figure 12: Exit Node

® CONVERSATION

ChoosefEnter Character...

Enter Conversation Text...

N

Figure 13: Conversation Node

11

To add a new line of dialogue, just click on the button.

To remove a line of dialogue, click on the button next to the line of dialogue you want to remove.

Each conversation node has one dialogue flow input, and one dialogue flow output.

Settings
Conversation Node (119)

lcon Settings

lcon ID: default CONVERSATION

Spin

Have you seen CRT around
here?

I'm pretty sure he lost my
frisbee...again.

Figure 14: Conversation Node Settings

Conversation Node Settings

Displaying Icons import settingsButton from */assets/settings_button.png’;

You can use Conversation nodes to display a character icon automatically.

™

To do this, click on the icon in the upper right of the node, and then choose the icon to show.

If there is no icon available, make sure that there is a character and icon configured in the Character
Library with the same character name as the name of the character in the Conversation node.

Append Nodes

Append nodes allow you to append new text to the currently displayed dialogue, without erasing what

is currently being shown to the player.

Each append node includes a field for entering the dialogue text you want to append.

12

APPEND

Enter text to append...

Figure 15: Append Node

The append node also includes as a zone where an audio clip can be dragged and dropped from the
project. This audio file will be played back as the append is executed during dialogue playback.

Each append node has one dialogue flow input, and one dialogue flow output.

Option Nodes

Option nodes are used to create a list of options to be presented to the player during dialogue playback.
Option nodes can have an unlimited number of options, but you should keep in mind what Dialogue
Display type you are using since some Option Displays are limited in the number of options they can
present.

You can type the text of each dialogue option in the fields provided.

import addButton from °/assets/add_item_button.png’; import removeButton from °/as-
sets/remove__item_ button.png’;

To add a new dialogue option, just click on the button.
To remove an option, click on the button next to the option you want to remove.

Each option node contains a single dialogue flow input, and a dialogue flow output for each option.
The dialogue flow will continue down the path of whichever option is chosen during dialogue playback.

13

Enter Option Text...

Enter Option lext...

Figure 16: Option Node

14

Option Modifier Nodes

OPTION MOD

Text

v Displayed

:B: v Selectable

Figure 17: Option Modifier Node

Option Modifier nodes allow you to dynamically modify options during dialogue playback at runtime.
You can connect a single option modifier to one or more options on one or more option nodes.

The parameters of the Option Modifier are explained below.

e Text: The text of the option.
e Display: Whether the option should be displayed on screen.
¢ Selectable: Whether the player should be allowed to select the option when it’s shown.

Each option modifier node contains a single option modifier output.

Story Nodes

Story nodes are useful for writing out branching storylines in the node editor. They provide a single
large text area for writing anything you want.

You can also use story nodes to implement your own logic since they don’t have an impact on the
dialogue display or flow by default. If you want to implement your own logic for handling story nodes,
you implement your own DialogueListener and override the OnStory() method:

15

Figure 18: Story Node

public class MyStoryHandler extends Dialoguelistener

{
public override void OnStory(string storyText)
{
}

}

Additionally, you can make Dialogue Displays pause whenever a Story node is encountered by setting
the “Pause on Story” setting to ‘true’. If you do this, you will need to call Continue() on the Dialogue
Controller whenever you want the dialogue to progress past the Story node.

Each story node has a dialogue flow input and output.

Flow-Nodes
Jump Nodes

There are two types of Jump nodes: Jump-In nodes, and Jump-Out nodes. These nodes are used
together to allow the dialogue to jump from one point to another.

Jump-In Nodes

16

JUMP

Enter Jump Key

Figure 19: Jump-In Node

Jump-In nodes are used as entry points which can be jumped to during dialogue playback. A Jump-In
node can only be reached by first encountering a Jump-Out node. Each Jump-In node contains an 1D
field which must contain a unique identifier.

Whenever a Jump-Out node with the same ID as a Jump-In node is reached, the dialogue flow
immediately jumps to the corresponding Jump-In node and continues playback from there.

Jump-In nodes contain a single dialogue flow output.

Jump-Out Nodes

Jump-Out nodes are used to jump from one point in a dialogue to another. The IDs of Jump-Out nodes
do NOT need to be unique, but they do need to be set to a valid Jump-In node ID in order to work.

Whenever a Jump-Out node is reached, the dialogue playback immediately jumps to the corresponding
Jump-Inn node and continues playback from there.

Jump-Out nodes contain a single dialogue flow input.

Path Selector Nodes

Path Selector nodes allow the dialogue flow to change paths based on a set or passed in index value. If
the index value is 0, the dialogue will continue down the first path, 1 for the second, etc..

import addButton from ‘/assets/add_item_button.png’; import removeButton from ‘/as-
sets/remove__item_ button.png’;

17

JUMP

Enter Jump Key

Figure 20: Jump-Out Node

Figure 21: Path Selector Node

18

To add a new path, just click on the button.
To remove a path, click on the button next to path you want to remove.
The path selector node contains a single dialogue flow input, an integer value input (for the index), and

a dialogue flow output for each path.

Random Path Nodes

Figure 22: Random Path Node

Random path nodes are used to choose a random path during dialogue playback. Each time the random
path node is encountered, it will randomly choose one of its path outputs to continue through.

import addButton from °‘/assets/add_item_ button.png’; import removeButton from °/as-
sets/remove__item__button.png’;

To add a new path, just click on the button.
To remove a path, click on the button next to the path you want to remove.

Random path nodes have one dialogue flow input, and a dialogue flow output for each path.

Sequence Path Nodes

19

Figure 23: Sequence Path Node

20

Sequence path nodes are used to choose paths in sequence, starting with the top-most path, to the
bottom-most path, each time the node is reached during dialogue playback. Whenever the last path is
reached, the next time the node is encountered, it will go back to the first, or top-most path again.

import addButton from ‘/assets/add_item_button.png’; import removeButton from */as-
sets/remove__item_ button.png’;

To add a new path, just click on the button.
To remove a path, click on the button next to the path you want to remove.

Sequence path nodes have one dialogue flow input, and a dialogue flow output for each path.

Pause Nodes

Figure 24: Pause Node

Pause nodes are used to pause the dialogue flow at a certain point, and the dialogue playback will
pause until Continue() is called on the Dialogue Controller.

Each pause node includes a ‘signal’ field, which you can enter a value in to do custom processing of
your own whenever that pause node is reached.

If you want to implement custom logic for pause nodes, you will need to implement a DialogueListener
and override the OnPause() method:

//Eztend the DialoguelListener class (which s also a MonoBehaviour)
public class PauseHandler extends Dialoguelistener

{
//0verride the OnPause() method
public override void OnPause(string signal)

{

//Perform custom logic here.

21

Each pause node has a dialogue flow input and output.

‘Wait Nodes

Figure 25: Wait Node

Wait nodes are used to pause dialogue playback temporarily for a certain period of time. The amount
of time to delay playback (in seconds) should be entered into the field provided in the node.

Each wait node contains one dialogue flow input, and one dialogue flow output.

Goto Nodes

Goto nodes can be used to jump from one Dialogue asset to another. The path to the desired Dialogue
asset must first be selected via the dropdown box.

An optional entry point ID (from an entry node in the Dialogue being jumped to) can also be entered,
but isn’t mandatory so long as the Dialogue asset has a valid entry node.

Each goto node contains one dialogue flow input.

Logic-Nodes
Boolean Logic Nodes

22

GOTO

Assets/Dialogue.asset *

hidden cave

Figure 26: Goto Node

Figure 27: Boolean Logic Node

23

Boolean logic nodes allow boolean logic operations to be performed during dialogue playback.

When reached via dialogue flow, the dialogue flow will continue based on the evaluated boolean value
of the operation. If the value is true, dialogue flow will continue down the TRUE dialogue flow output
path; otherwise, the dialogue flow will continue down the FALSE dialogue flow output path.

The boolean (true/false) value of these operations can optionally be sent on to another node by using
the boolean output.

Each boolean logic node has one dialogue flow input, a boolean value input for each variable needed for
the boolean logic operation, a boolean value output for the result of the operation, a TRUE dialogue
flow output (for when the result is true), and a FALSE dialogue flow output (for when the result is
false).

Build String Nodes

Figure 28: Build String Node

Build String nodes are used to create a string dynamically at runtime during dialogue playback. The
values of each field/input in the build string node are concatenated to produce an output string, which
is sent on to the string value output of the node.

24

You can either type the string value in a field, or you can use the value outputs from other nodes to
pass values in for each part of the final constructed string.

There are no delimiters or separation characters added into the string, so if you need spaces between
each value, you will need to type them into the field.

import addButton from ‘/assets/add_item_button.png’; import removeButton from */as-
sets/remove__item_ button.png’;

To add a new string field, just click on the button.
To remove a string field, click on the button next to the string field you want to remove.

Each build string node contains one dialogue flow input, a value input for each string being concatenated,
a single string value output for the final concatenated string value, and one dialogue flow output.

Example: In the example setup below, the string value output produced would be “You have 3
apples huh? Gimme!”.

INT

numApples apples huh?
E
\ ResetonEntry? « (1)

Gimme!

Figure 29: Build String Node

Compare Numbers Nodes

25

GREATER_THAN

Figure 30: Compare Numbers Node

Compare Numbers nodes are used to compare two numerical values during dialogue playback, resulting
in a boolean output value.

When reached via dialogue flow, the dialogue flow will continue based on the evaluated boolean value
of the operation. If the value is true, dialogue flow will continue down the TRUE dialogue flow output
path; otherwise, the dialogue flow will continue down the FALSE dialogue flow output path.

The boolean (true/false) value of these operations can optionally be sent on to another node by using
the boolean output.

The comparison types available are: - LESS THAN - Evaluates to TRUE whenever the first (top)
value is less than the second (bottom) value, FALSE otherwise. - GREATER_THAN - Evaluates
to TRUE whenever the first (top) value is greater than the second (bottom) value, FALSE oth-
erwise. - EQUAL_TO - Evaluates to TRUE whenever the values are equal, FALSE otherwise -
LESS_THAN_OR_EQUAL - Evaluates to TRUE whenever the first (top) value is less than or equal
to the second (bottom) value, FALSE otherwise. - GREATER, THAN_OR_EQUAL - Evaluates to
TRUE whenever the first (top) value is greater than or equal to the second (bottom) value, FALSE
otherwise. - NOT_EQUAL - Evaluates to TRUE whenever the values are not equal, FALSE otherwise.

You can type the values to compare into the numerical fields, or determine their values during playback
by passing in a value from another node.

Each compare numbers node has one dialogue flow input, a numerical value input for each variable
needed for the comparison, a boolean value output for the result of the comparison, a TRUE dialogue
flow output (for when the result is true), and a FALSE dialogue flow output (for when the result is
false).

26

Compare Strings Nodes

Figure 31: Compare Strings Node

Compare Strings nodes are used to compare two string values during dialogue playback, resulting in a
boolean output value.

When reached via dialogue flow, the dialogue flow will continue based on the evaluated boolean value
of the operation. If the value is true, dialogue flow will continue down the TRUE dialogue flow output
path; otherwise, the dialogue flow will continue down the FALSE dialogue flow output path.

The boolean (true/false) value of these operations can optionally be sent on to another node by using
the boolean output.

The comparison types available are: - EQUAL - Evaluates to TRUE whenever the two string values
are equal, FALSE otherwise. - NOT_EQUAL - Evaluates to TRUE whenever the two string values
are different, FALSE otherwise. - AFTER - Evaluates to TRUE whenever the first (top) string value
comes alphabetically after the second (bottom) value, FALSE otherwise. - BEFORE - Evaluates to
TRUE whenever the first (top) string value comes alphabetically before the second (bottom) value,
FALSE otherwise.

You can type the values to compare into the string fields, or determine their values during playback by
passing in a string value from another node.

Each compare strings node has one dialogue flow input, a string value input for each variable needed
for the comparison, a boolean value output for the result of the comparison, a TRUE dialogue flow
output (for when the result is true), and a FALSE dialogue flow output (for when the result is false).

27

Conditional Value Nodes

STRING
TRUE

Figure 32: Conditional Value Node

Conditional value nodes allow a value to be chosen from two possible values during dialogue playback,
based on a boolean value.

If the boolean value evaluates to TRUE, the first (top) value will be sent to the value output, otherwise
the second (bottom) value will be sent.

The conditional value node must have a type selected (string, int, float, or boolean), which determines
the type of value that is being selected and the value input and value output types.

The boolean value can either be set via the boolean dropdown, or you can pass it into the boolean
input from another node.

Each value can either be passed in via the corresponding inputs, or typed into the provided text field.

Each conditional value node contains one dialogue flow input, one dialogue flow output, a boolean
input for choosing a value, an input for each value, and an output for the specified value type.

Math Nodes

28

Figure 33: Math Node

Math nodes provide a way to perform simple math operations during dialogue playback and output the
calculated value of the math operation to other nodes.

You can choose the math operation to perform from the operation dropdown at the top of the node.
The available math operations are:

e ADD - Add the values together and send the result to the value output.

o SUBTRACT - Subtract the second (bottom) value from the first (top) value and send the result
to the value output.

¢ MULTIPLY - Multiple the values and send the result to the value output.

o DIVIDE - Divide the first (top) value by the second (bottom) value and send the result to the
value output.

You can either enter numeric values yourself, or you can pass them in to the numeric value inputs for
each field.

Each math node contains a dialogue flow input, a dialogue flow output, a numeric value input for each
variable, and a numeric value output.

Select Value Nodes

Select value nodes are used to select a particular value based on an index. If the index value is 0, the
first (top) value will be sent to the value output, if it’s 1, the second will be sent, etc..

29

STRING

Figure 34: Select Value Node

30

You can choose the type of value from the value type dropdown at the top of the node.

The index value can be entered, or it can come from another node’s output which will be determined
during dialogue playback.

Each value provides a field where you can enter the value manually, or the value can come from another
node’s output.

You can have an unlimited number of values in a select value node.

import addButton from °/assets/add_item_button.png’; import removeButton from °/as-
sets / remove__ item_ button.png’;

To add a new value, just click on the button.
To remove a value, click on the button next to the value you want to remove.

Each select value node contains a dialogue flow input, a dialogue flow output, an integer index value
input, a value input for each value (based on the selected type), and a value output (based on the
selected type).

Trigger Script Nodes

TRIGGER SCRIPT

Enter Class Name/Drop

Enter Methokd Signature

Enter Variable Value...
Enter Variable Value...
Enter Variable Value...

Enter Variable Value...

Apply To:

Figure 35: Trigger Script Node

Trigger script nodes allow script functions (methods) to be triggered during dialogue playback.

This node can only be used with MonoBehaviour types or static class methods.

31

TRIGGER SCRIPT |

Enter Class Name/Drop
Enter Method Signature
Enter Variable Value...
Enter Variable Value...
Enter Variable Value...

Enter Variable Value...

Apply To: A

Figure 36: Dragging a C# Script onto a Trigger Script Node.

32

You can drag-and-drop a C# file onto the ‘Class Name’ field, or type the fully qualified class name
(including namespace) yourself for the class you want to use.

Once you have provided a valid class, you can choose the method you want to call from the method
dropdown.

If no method dropdown is provided, it means that the trigger script node couldn’t find any valid
methods. You can still manually type a method definition in the method field (see Method Definitions).

After you set or write a method defintion, the parameters for the node will be updated to match the
method.

Trigger Script Nodes can only use int, float, bool, and string parameter types. It also supports object
type parameters, but if you use a method which takes in an object type, that method needs to be able
to handle the conversion of the string/int/float/bool value passed in, since EasyTalk cannot handle
complex object types at this time.

You can either manually enter values into the parameter fields, or you can pass them in from the
outputs of other nodes.

Make sure you set the ‘Apply To’ dropdown to the correct setting. Each option is described below:
- SELF - Use this when the triggered MonoBahaviour class component is on the same GameODbject
as the Dialogue Controller and you want to call the method on that GameObject. - ALL - Used
when you want to call the method on all instances of the MonoBehaviour class specified. - FIRST
- Finds the first instance of the specified MonoBehaviour class in the scene, using GameObject.Find
and calls the method on that object. - TAG - Finds the GameObject with the specified tag name and
MonoBehaviour component, then calls the method on it. - NAME - Finds the GameObject with the
specified name and MonoBehaviour component, then calls the method on it. - STATIC - Calls the
static class method.

The method is executed each time it is encountered during dialogue flow or node evaluations. The
return value of the method, if there is one, will be sent to the value output of the trigger script node.

Each trigger script node contains a dialogue flow input, a dialogue flow output, a value input for each
method parameter, and if there is a return value for the method being called, a value output.

Example 1: Mathf

TRIGGER SCRIPT

SET VARIABLE

Parameter 3 myFloat -

Pr—— =N value

progress
0.2
| Resaton Entry?

Figure 37: Calling UnityEngine.Mathf functions from a Trigger Script Node.

33

In the above setup, the Trigger Script Node will call the Lerp method of the Mathf class, passing in 0.0
for the first parameter, 5.0 for the second parameter, and the value of the ‘progress’ variable for the
third variable.

The result of the Lerp goes to the value output, and can be sent to other nodes for further processing.
In this example, we're just setting the value of another float variable via a Set Variable Node.

Take notice of how the ‘Apply To’ setting is set to ‘STATIC’, since the Lerp method is a static class
method of Mathf.

Method Definitions Method descriptions in the method field are in the following format:
METHOD_NAME(TYPE_1,TYPE 2 TYPE 3, TYPE 4)RETURN_TYPE
The supported types are int, float, bool, string, and object.

Example 1 Description of a method called AddNumbers which takes in two float parameters and
returns a float value:

AddNumbers(float,float):float

Example 2 Description of a method called SetText which takes in a string and returns a boolean
value.

SetText(string):bool

Trigger script nodes support a maximum of 4 parameters.

Variable-Nodes
Get Variable Nodes

Get variable nodes are used to retrieve the current value of a variable and pass that value on to another
node’s value input.

Just choose the variable name for the variable you want to retrieve the value of, and connect the value
output to whatever node you are sending the value to.

Get Variable nodes can be connected along the dialogue flow path via the dialogue flow input and
output ports, but can also be evaluated if they are part of a chain in the input/output of any node
that is evaluated along the dialogue flow path.

Set Variable Nodes

Set Variable nodes are used to change the value of a variable during dialogue playback.

Choose the name of the variable from the dropdown, and input the value which should be set on the
variable whenever the Set Variable node is reached. You can also use a value from another node to set
the value via the value input.

34

GET VARIABLE

my5String v

Figure 38: Get Variable Node

SET VARIABLE

myString v

Figure 39: Set Variable Node

35

Set Variable nodes can be connected along the dialogue flow path via the dialogue flow input and
output ports, but can also be evaluated if they are part of a chain in the input/output of any node
that is evaluated along the dialogue flow path.

Boolean Variable Nodes

myBool
TRUE v

+ Reset on Entry?
Is Global?

Figure 40: Bool Variable Node

Boolean variable nodes are used to declare/create a boolean variable for use in other places in a dialogue.

You can retreive boolean variable values by using Get Variable nodes, or set their values using Set
Variable nodes.

The boolean variable node includes a dropdown where you can set the initial value of the variable.

If you want the variable to be reset to the initial value each time the dialogue is entered, check the
“Reset on Entry” toggle. Note: This only applies to local variables.

If the variable is intended to be a global variable (accessible from any dialogue), check the “Is Global”
toggle.

Boolean variable nodes have a single boolean value output, which returns the current value of the
variable.

Float Variable Nodes

Float variable nodes are used to declare/create a float variable for use in other places in a dialogue.

You can retreive float variable values by using Get Variable nodes, or set their values using Set Variable
nodes.

36

¥ FLOAT

myFloat

Enter Value...
«+ Reset on Entry?
Is Global?

Figure 41: Float Variable Node

The float variable node includes a text field where you can set the initial value of the variable.

If you want the variable to be reset to the initial value each time the dialogue is entered, check the
“Reset on Entry” toggle. Note: This only applies to local variables.

If the variable is intended to be a global variable (accessible from any dialogue), check the “Is Global”
toggle.

Float variable nodes have a single float value output, which returns the current value of the variable.

Int Variable Nodes

Int variable nodes are used to declare/create an integer variable for use in other places in a dialogue.

You can retreive int variable values by using Get Variable nodes, or set their values using Set Variable
nodes.

The int variable node includes a text field where you can set the initial value of the variable.

If you want the variable to be reset to the initial value each time the dialogue is entered, check the
“Reset on Entry” toggle. Note: This only applies to local variables.

If the variable is intended to be a global variable (accessible from any dialogue), check the “Is Global”
toggle.

Int variable nodes have a single int value output, which returns the current value of the variable.

String Variable Nodes

37

mylInt

Enter Value...
«+ Reset on Entry?
Is Global?

Figure 42: Int Variable Node

my5String

Enter Value...

+ Reseton Entry?
Is Global?

Figure 43: String Variable Node

38

String variable nodes are used to declare/create a string variable for use in other places in a dialogue.

You can retreive string variable values by using Get Variable nodes, or set their values using Set Variable
nodes.

The string variable node includes a text field where you can set the initial value of the variable.

If you want the variable to be reset to the initial value each time the dialogue is entered, check the
“Reset on Entry” toggle. Note: This only applies to local variables.

If the variable is intended to be a global variable (accessible from any dialogue), check the “Is Global”
toggle.

String variable nodes have a single string value output, which returns the current value of the variable.

Utility Nodes
Show Nodes

Jimmy (happy)
CHARACTER

Jimmy

happy
Override Target ID? []

Figure 44: Show Node

Show nodes are used to show Dialogue Panels, or to show Character portrayals (sprites) on special
Dialogue Panels in a Dialogue Display.

39

Each Show node can handle showing multiple panels or character portrayals at the same time.
import addButton from ‘. /assets/add_item_ button.png’;
To add a new display or character to be shown, just click on the button.

When set in DISPLAY mode, a Display ID must be entered for the Dialogue Panel which is to be
shown.

In CHARACTER mode, a character must be selected, along with a portrayal ID to be shown.

In the Character Library, each portrayal defines a Default Target ID, which is the Display ID that the
image will be portrayed on, by default. If you wish to display a character’s portrayal on a different 1D
than the configured default, you can check the “Override Target ID” box and enter the Display ID for
the character display you would like to use.

The dialogue’s flow will pause until all of the display panels and character panels are finished showing,
meaning their animations have completed and they are visible.

Each show node contains one dialogue flow input and one dialogue flow output.

Hide Nodes

HIDE

Jimmy
CHARACTER

Jimmy

Figure 45: Hide Node

40

Hide nodes are used to hide Dialogue Panels and Character portrayals (sprites) on special Dialogue
Panels in a Dialogue Display.

Each Hide node can handle hiding multiple panels or character portrayals at the same time.
import addButton from ‘. /assets/add_ item_ button.png’;

To add a new display or character to be hidden, just click on the button.

For each entry set to DISPLAY mode, enter the Display ID of the Dialogue Panel to be hidden.

For the entries set to CHARACTER mode, choose the name of the character to be hidden. Note that
only characters defined in a Character Library will be available for selection. Any character displays
which are currently displaying the specified character will be hidden.

The dialogue’s flow will pause until all of the display panels and character panels are finished being
hidden, meaning their animations have completed and they are no longer visible.

Each hide node contains one dialogue flow input and one dialogue flow output.

Player Input Nodes

PLAYER INPUT

Figure 46: Player Input Node

41

Player Input nodes are used to prompt the player for text input, which can then be stored in a node
variable or passed into another node’s string value input.

The text field of a player input node allows the placeholder text to be set which will be shown to the
player before they type a value.

Each player input node contains one dialogue flow input, one dialogue flow output, and one string value
output.

Variable Injection

If you have variables in your dialogue, you can inject their values into option text or lines of dialogue
(in conversation nodes) very easily by using variable injection tags.

To do this, just put the variable name in the following format into the text field:

(QVARIABLE_NAME)

Example

In the example below, the variables ‘goodsType’ and ‘goodsCount’ are injected into a line of dialogue.
The line of dialogue that will be shown when the dialogue is played will be based on the values of the
variables at that time, but assuming that the values are the same as their initial values, the output
would look like: ‘If you're looking for apples, I have 5 apples I can sell to you...".

® CONVERSATION

sk Merchant

If you're looking for (@goodsType), I have
(@goodsCount) (@goodsType) I can sell to you.

goodsType goodsCount

apples 5
. Reset on Entry? J Reset on Entry?

Figure 47: Variable Injection in the Node Editor

42

Special Tags

There are several special tags that allow you to have more control over how the dialogue system works.
Some of these tags are used in lines of dialogue (in conversation nodes), and some are used in dialogue
options (in option nodes).

Conversation Node Tags

Append Tags

Append tags can be used on a line of dialogue to append text to the currently displayed text, rather
than clearing the current text out to write a completely new line of dialogue.

The format of append tags is structured like this:
[append]

Autoplay Tags

Autoplay tags are used to automatically play the next line of dialogue after the one marked with the
autoplay tag finishes being displayed.

The format of Autoplay tags is structured like this:
[autoplay]

An optional delay (in seconds) can also be specified to override the automatically calculated delay time
before automatically displaying the next line of dialogue:

[autoplay:my__delay]

ID Tags ID tags are used to identify lines of dialogue and can be useful for implementing logic in
Dialogue Listeners.

The format of ID tags is structured like this:

[id:my_id]

Target Tags Target tags are used to change the Conversation Display which the line of dialogue will

be shown on. To use target tags, set a Display ID on any Conversation Displays you need to target,
and then easily you can switch between them using target tags.

The format of target tags is structured like this:
[target:DISPLAY ID]

Key Tags Key tags provide a way of attributing a custom string to a line of dialogue. You can use
these to send information to your own Dialogue Listener classes to do custom processing when lines of
dialogue are played.

Key tags are structured like this:

[key:MY__STRING]

Name Tags Name tags allow you to change the name of the speaker of a line of dialogue, which
enables you to have multiple characters speaking within a single Conversation Node.

The structure of a name tag is shown below:

[name:SPEAKER _NAME]

43

Optionally, a name tag may also include an icon ID. The icon ID must match the ID of an icon
configured for a character with the specified name in the Character Library being used. An example of
the format for a name tag with an icon ID included is shown below:

[name:SPEAKER__ NAME,ICON_ID]

Translate Tags Translate tags allow you turn translation for a particular line of dialogue on or off.
Translate tags have the following structure:

[translate: TRUE/FALSE]

Option Node Tags

ID Tags ID tags are used to identify optionse and can be useful for implementing logic in Dialogue
Listeners and Option Display Listeners.

The format of ID tags is structured like this:

[id:my_id]

Display Tags Display tags act in the same way as the ‘Display’ parameter on option modifier nodes,
making it so that you can easily prevent an option from being displayed.

Display tags look like this:

[display: TRUE/FALSE]

Selectable Tags Selectable tags are also an easy way to replicate the behavior of the ‘Selectable’
parameter of option modifier nodes. You can use these tags to turn off option selectability.

Selectable tags have the structure below:

[selectable: TRUE/FALSE]

Global Variables

EasyTalk supports global variables which can be used across Dialogue assets during gameplay. These
variables can be created in the node editor or within a Dialogue Registry asset.

Dialogue Registry

In order to use global variables, a Dialogue Registry is required. The default Dialogue Registry asset
exists in EasyTalk/Runtime/settings/.

A Dialogue Registry must be set on either the Dialogue Settings asset (set on Dialogue Displays),
or in the Dialogue Controller field in order for global variables to be loaded during runtime. The
recommended setup is to just set the Dialogue Registry on your Dialogue Settings asset, except in some
situations where Dialogue Controllers are being used without a Dialogue Display.

The Dialogue Registry contains declarations for all of the global variables used in your project. It is
possible to use multiple Dialogue Registries for a single project, but for simplicity it is recommended to
use one.

44

Global Variables

Variable Count

global_counter

Variable Mame global_counter

Variable Type INT

Initial Value 0

Figure 48: Dialogue Registry Inspector

Node Editor

Whenever “Is Global” is toggled on/off for a variable node in the node editor, a global variable definition
will automatically be added/removed to the Dialogue Registry.

Dialogue Assets

Dialogue Assets contain the lines of dialogue and information about conversational flow, as well dialogue
options and logic and variables which may be relevant to the conversation.

These assets are created using the EasyTalk Node Editor.

Creating a Dialogue Asset

To create a new Dialogue Asset, right-click in the Project Window and choose ‘Create -> EasyTalk ->
Dialogue’

Editing Dialogue Assets

You can open a Dialogue Asset in the EasyTalk Node Editor by double-clicking on the asset in the
Project Window, or via the ‘File -> Open Dialogue’ menu in the node editor.

Dialogue Controllers

Dialogue Controllers are used to play dialogue and process Dialogue Assets, keeping track of the current
state of a conversation and determining where to go next.

EasyTalk provides a lot of flexibility with how you can set up your project, but in many cases, it makes
the most sense to have a single Dialogue Controller for each character.

45

Figure 49: A Dialogue Assset in the EasyTalk Node Editor

Controllers send signals to registered Dialogue Listeners (such as Dialogue Displays) to let them know
what’s going on in a conversation, such as when the current line of dialogue changes, or when a character
change occurs, or when options are supposed to be presented to the player.

It’s up to Dialogue Displays and other components to signal the controller back to let it know when to
continue or when an option is chosen.

Playing Dialogue

When you want to play dialogue, you just call PlayDialogue() on a controller with the dialogue you
want to play:

using EasyTalk.Controller;

void Start()
{

DialogueController controller = GetComponent<DialogueController>() ;

controller.PlayDialogue() ;
}

You can also provide an entry point ID to the PlayDialogue() method if you have multiple Entry nodes
in your dialogue and you want to start from a certain point:

using EasyTalk.Controller;

46

void Start()

{
//Retrieve the dialogue controller component from the current GameObject
DialogueController controller = GetComponent<DialogueController>() ;
//Start dialogue playback at the Entry node which has the ID of "intro"
controller.PlayDialogue("intro") ;

b

If you haven’t assigned a Dialogue Display to the controller, it will automatically search for a Dialogue
Display in the scene and use the first one found whenever you call PlayDialogue().

If you need to switch which Dialogue Asset a controller is using during gameplay, you can call the
ChangeDialogue() method.

Controller Settings

+ Dialogue Controller (Script)

2 Dialogue (Dialogue)
MNone (Dialogue R
Flayback Type WAIT_FOR_COMMAND

Uze Dialogue Display? b
Dialogue Display Mone stract Dialogue Display)

Mone (Conversation Display)

Dialogue Listeners
Controller Events

Dialogue Events

Setting Description

Dialogue The Dialogue Asset containing the dialogue or
logic which the controller will use.

Dialogue Registry (Optional) A Dialogue Registry to use for

initializing global variables. Normally the
Dialogue Registry is used from Dialogue Settings
(set on a Dialogue Display), but if there is no
Dialogue Display being used, this can be set to
allow global variables to be used with controllers.

47

Setting

Description

Playback Type

Dialogue Display

Conversation Display

Audio Source

Dialogue Listeners

Determines how dialogue should be played on the
controller, either waiting for player input to
continue to the next line of dialogue, or
automatically proceeding based on a timer (or the
length of audio for a line).

(Optional) Tells the controller which dialogue
display it should use when PlayDialogue() is
called. If this isn’t set, it will search for one in the
scene.

(Optional) The conversation display to use for
displaying dialogue for this controller. If left
empty, the Dialogue Display will use its currently
set conversation display.

(Optional) The audio source to use when playing
audio for lines of dialogue. If left empty, the
Dialogue Display will attempt to use an audio
source of its own instead.

Dialogue Listeners to call as events happen during
dialogue playback. Controllers automatically
register and unregister Dialogue Displays as
needed, but you can add your own Dialogue
Listeners here if you want to implement custom
logic that responds to dialogue playback.

Dialogue Listeners

Dialogue Listeners can be added to this list and their relevant methods will be called as events take
place during dialogue playback. By creating your own Dialogue Listener extension class you can create
more complex systems which respond to dialogue events.

Controller Events

Event Name

Description

On Play
On Stop

Triggered whenever dialogue playback starts.
Triggered whenever dialogue playback stops.

Dialogue Events

Event Name

Description

On Continue

On Display Options

On Option Chosen

48

Called whenever dialogue playback continues to
the next line of dialogue, or in some cases, the
next node.

Called whenever dialogue options are to be
presented to the player.

Called whenever a dialogue option has been
chosen /finalized.

Event Name

Description

On Display Line

On Dialogue Entered
On Dialogue Exited
On Exit Completed
On Story

On Variable Updated

On Character Changed
On Audio Started

On Audio Completed
On Activate Key

On Wait

On Conversation Ending
On Node Changed

On Pause

Called whenever a line of dialogue is to be
displayed.

Called whenever dialogue playback begins.
Called whenever dialogue playback ends.

Called one frame after dialogue playback ends.
Called whenever a story node is encountered
during dialogue playback.

Called whenever a dialogue variable’s value is
changed.

Called whenever a character change is detected.
Called whenever audio playback starts for a line
of dialogue.

Called whenever audio playback stops or finishes
for a line of dialogue.

Called whenever a line of dialogue is being
processed.

Called whenever a Wait node is encountered
during dialogue playback.

Called whenever dialogue playback reaches the
last line of dialogue in a Conversation node.
Called whenever dialogue playback moves from
one node to another.

Called whenever a Pause node is encountered
during dialogue playback.

Area Dialogue Controllers

An Area Dialogue Controller component can be used instead of a regualar Dialogue Controller to
automatically start and stop dialogue playback whenever an object enters the area defined by a trigger
collider on the controller.

Setup

To set up an Area Dialogue Controller, do the following:

1. Add an Area Dialogue Controller component to your character.

2. Add a Collider component to the same GameObject as the Area Dialogue Controller.

3. Set the Collider’s ‘Is Trigger’ value to ‘true’

4. In the Dialogue Controller’s ‘Activator’ field, assign the collider which you want to trigger dialogue
playback (Note: this should be a different collider, such as a collider for a player
character).

5. Assign a Dialogue Asset to the ‘Dialogue’ field and adjust any other settings as needed.

6. To have dialogue play automatically whenever the Activator collider enters the trigger collider,
set the Activation Mode to PLAY__ON__ENTER. If you would rather activate some other
script or prompt object first, set the Activation Mode to PROMPT__ON_ ENTER instead,
and you can add events to the ‘On Prompt’ or ‘On Area Entered’ events to handle any logic
of your own, and call PlayDialogue() yourself.

Area Controller Settings

49

+ Area Dialogue Controller (Script)

Dialogue 2 Dialogue (Dialogue)

Mone (Dialogue R

AUTOPLAY

tion Mode PLAY_OM_ENTER
ation Mode FIMISH_PLAYING

Dialogue Listeners

Controller Events

Dialogue Events

Figure 50: Area Dialogue Controller Settings

50

General Settings

Setting

Description

Dialogue

Dialogue Registry

Playback Type

Dialogue Display

Conversation Display

Audio Source

The Dialogue Asset containing the dialogue or
logic which the controller will use.

(Optional) A Dialogue Registry to use for
initializing global variables. Normally the
Dialogue Registry is used from Dialogue Settings
(set on a Dialogue Display), but if there is no
Dialogue Display being used, this can be set to
allow global variables to be used with controllers.
Determines how dialogue should be played on the
controller, either waiting for player input to
continue to the next line of dialogue, or
automatically proceeding based on a timer (or the
length of audio for a line).

(Optional) Tells the controller which dialogue
display it should use when PlayDialogue() is
called. If this isn’t set, it will search for one in the
scene.

(Optional) The conversation display to use for
displaying dialogue for this controller. If left
empty, the Dialogue Display will use its currently
set conversation display.

(Optional) The audio source to use when playing
audio for lines of dialogue. If left empty, the
Dialogue Display will attempt to use an audio
source of its own instead.

Activation Settings

Setting

Description

Activator

Entry Point

Activation Mode

51

This is the collider which will activate the
controller to start dialogue playback or trigger a
prompt.

(Optional) Specifies the Entry node ID where
dialogue playback should start.

If this is set to PLAY_ON__ENTER, the
controller will automatically start dialogue
playback whenever the ‘activator collider’ enters
the collider of this controller. If set to
PROMPT _ON__ENTER, the controller will not
play dialogue automatically, but instead will
trigger anything registered with the ‘On Prompt’
Unity event.

Setting

Description

Deactivation Mode

If set to FINISH_PLAYING, then the dialogue
will conttinue playback even after the ‘activator
collider’ leaves the controller’s collider. If this is
EXIT_ON_LEAVE_AREA, dialogue playback
will exit immediately whenever the ‘activator
collider’ is no longer colliding with the controller’s
collider.

Dialogue Listeners

Dialogue Listeners can be added to this list and their relevant methods will be called as events take
place during dialogue playback. By creating your own Dialogue Listener extension class you can create
more complex systems which respond to dialogue events.

Controller Events

Event Name

Description

On Play
On Stop
On Prompt

On Area Entered

On Area Exited

Triggered whenever dialogue playback starts.
Triggered whenever dialogue playback stops.
Triggered whenever a prompt is triggered (when
activation mode is set to

PROMPT ON_ ENTER and the activator enters
the controller’s collider).

Triggered whenever the activator enters the
controller’s collider.

Triggered whenever the activator leaves the
controller’s collider.

Dialogue Events

Event Name

Description

On Continue

On Display Options
On Option Chosen
On Display Line

On Dialogue Entered
On Dialogue Exited
On Exit Completed
On Story

On Variable Updated

52

Called whenever dialogue playback continues to
the next line of dialogue, or in some cases, the
next node.

Called whenever dialogue options are to be
presented to the player.

Called whenever a dialogue option has been
chosen /finalized.

Called whenever a line of dialogue is to be
displayed.

Called whenever dialogue playback begins.
Called whenever dialogue playback ends.
Called one frame after dialogue playback ends.
Called whenever a story node is encountered
during dialogue playback.

Called whenever a dialogue variable’s value is
changed.

Event Name Description

On Character Changed Called whenever a character change is detected.

On Audio Started Called whenever audio playback starts for a line
of dialogue.

On Audio Completed Called whenever audio playback stops or finishes
for a line of dialogue.

On Activate Key Called whenever a line of dialogue is being
processed.

On Wait Called whenever a Wait node is encountered
during dialogue playback.

On Conversation Ending Called whenever dialogue playback reaches the
last line of dialogue in a Conversation node.

On Node Changed Called whenever dialogue playback moves from
one node to another.

On Pause Called whenever a Pause node is encountered

during dialogue playback.

Accessing Variables

Once a Dialogue Controller’s Dialogue has been initialized, dialogue variables can be accessed outside
of dialogue playback by your own scripts.

This provides more control and allows you to retrieve variable values and set variable values for variables
which exist within the Dialogue.
Setting Variable Values

To set variable values, you can use the setter methods made available in the Dialogue Controller for
each type, string, int, float, and bool:

//Sets the string variable 'myString' to 'Hello'
myDialogueController.SetStringValue("myString", "Hello!");

//Sets the int variable 'myInt' to 42
myDialogueController.SetIntValue("myInt", 42);

//Sets the float variable 'myFloat' to 3.14159
myDialogueController.SetFloatValue("myFloat", 3.14159f);

//Sets the bool vartable 'myBool' to true
myDialogueController.SetBoolValue("myBool", true);
Getting Variable Values

Similarly to the setter methods, you can retrieve variable values via the getter methods of the Dialogue
Controller for each type, string, int, float, and bool:

//Gets the value of string variable 'myString’
string stringValue = myDialogueController.GetStringValue("myString") ;

//Gets the value of int wvariable 'myInt’
int intValue = myDialogueController.GetIntValue("myInt");

53

//Gets the wvalue of float variable 'myFloat'
float floatValue = myDialogueController.GetFloatValue("myFloat");

//Gets the value of bool wariable 'myBool'’
bool boolValue = myDialogueController.GetBoolValue("myBool");

Saving and Loading Variables

EasyTalk provides an easy way to save and load variable values of a Dialogue during runtime if you
want to maintain the Dialogue state across game restarts.

Saving Variable Values To save variable values, just call the method SaveVariableValues() on the
Dialogue Controller you want to save variable values for.

//To save local (dialogue-spectific) variables
myDialogueController.SaveVariableValues() ;

//To save global wvartiables
myDialogueController.SaveGlobalVariableValues() ;

You can provide a file name prefix to append to the JSON file which will be saved:
string playthroughID = " 12345";

//To save local (dialog-specific) wvariables
myDialogueController.SaveVariableValues (playthroughlID) ;

//To save global wariables
myDialogueController.SaveGlobalVariableValues (playthroughID) ;

In the above example, if the controller is set to use a Dialogue asset called ‘mainStory’, the JSON file
for saved variable values will be ‘12345__mainStory.json’

By default, variable values will be saved to a JSON file, but alternatively, you can save to PlayerPrefs
instead by passing true as the second parameter to the SaveVariableValues method:

//Variable states are saved to PlayerPrefs instead of a JSON file.
string playthroughID = " 12345";

//To save local (dialog-specific) variables
myDialogueController.SaveVariableValues (playthroughID, true);

//To save global wvartables
myDialogueController.SaveGlobalVariableValues (playthroughID, true);

Loading Variable Values Similar to saving variable values, you can load them using the LoadVari-

ableValues method:

//To load local (dialogue-specific) wvariables
myDialogueController.LoadVariableValues() ;

//To load global wariables
myDialogueController.LoadGlobalVariableValues();

You can also provide a prefix:

54

string playthroughID = " 12345";

//To load local (dialogue-specific) variables
myDialogueController.LoadVariableValues (playthroughlID) ;

//To load global wvartables
myDialogueController.LoadGlobalVariableValues (playthroughID) ;
And you can load from PlayerPrefs instead of a JSON file:

string playthroughID = " 12345";

//To load local (dialogue-specific) wvariables
myDialogueController.LoadVariableValues (playthroughID, true);

//To load global wvartables
myDialogueController.LoadGlobalVariableValues (playthroughID, true);

Dialogue Displays (UTI)

Dialogue Displays provide the user interface (UTI) for the player to see lines of dialogue, information
about speaking characters (such as their name, character image, etc.), and options when appropriate,
along with functionality for the player to be able to select an option.

There are several different Dialogue Display prefabs included with EasyTalk in the ‘Prefabs/Dialogue
Displays/Screenspace’ folder. You can see the complete catalogue here.

wimbnails

Figure 51: Dialogue Display Prefabs included with EasyTalk

Each Dialogue Display utilizes a few different types of display components: Conversation Displays,
Option Displays, and Continue Displays, each of which contains various sub-components of their own.

Conversation Displays are used to display lines of dialogue and information about a speaking character,
such as the character’s name.

Option Displays provide the logic and components to present dialogue options to the player via Dialogue
Buttons.

55

Continue Displays are used to make the player aware that they can continue to the next line of dialogue
via input controls.

Continue Display
Convo Display

Figure 52: Display Components

The Character Name Display is actually part of the Conversation Display composed of image and
text components. If you don’t want to show a character name of the images, you can just disable the
“Character Name Panel” object.

Dialogue Display Settings

Each Dialogue Display has many different settings that allow the functionality of the UI to be fine-tuned
based on the needs of the game. The settings are described in the sections that follow.

Settings Asset

Dialogue Settings EasyTalk Dialogue Settings

Figure 53: EasyTalk Dialogue Settings Asset

An EasyTalk Dialogue Settings Asset containing universal settings which are not specific to individual
Dialogue Displays, such as language and translation settings.

56

Sub Displays

Sub-Displays

Conversation Display

ion Display

Cantinue Display

Figure 54: Sub-Display Settings

Setting Description

Conversation Display The Conversation Display which the Dialogue
Display should use to show lines of dialogue.

Option Display The Option Display which the Dialogue Display
should use to present dialogue options to the
player.

Continue Display The Continue Display which the Dialogue Display

should use to alert the player that they may
continue to the next line of dialogue.

General Settings

General Settings

Figure 55: General Settings

Setting Description

Destroy on Load Whether the display should be destroyed when a
new scene is loaded.

Hide On Exit Whether the conversation display should be
hidden whenever dialogue playback ends.

Hide on Pause Whether the dialogue display should be hidden
whenever a Pause node is reached during dialogue
playback.

57

Setting

Description

Continue on Story

Allow Quick Exit

Whether the Dialogue Display should
automatically tell the Dialogue Controller to
continue to the next node whenever a story node
is reached.

Whether the display should allow the player to
instantly exit dialogue playback by pressing a
button (configured as ‘Exit Conversation Action
Name’ or ‘Quick Exit Button Name’ depending
on the input system being used).

Conversation Settings

Figure 56: Conversation Settings

Setting

Description

Default Conversation Display ID

Are Lines Skippable

Hide Convo When Showing Options

58

If this is set, whenever a Dialogue Controller
begins playback, if it doesn’t specify a
Conversation Display to use, the Dialogue Display
will automatically switch back to using the first
Conversation Display in the scene which has a
Display ID matching this value.

Whether the player is allowed to skip lines of
dialogue early via the continue mechanism (after
the configured continuation delay or once audio
finishes).

Whether the conversation display should be
hidden when dialogue options are presented to the
player.

Setting

Description

Clear Convo When Showing Options

Refresh Convo On Character Change

Refresh Convo On Text Change

Switch Convo Display On Character Change

Whether the conversation display should be reset,
having the conversation text and character name
set to empty strings whenever options are
presented to the player.

If this is true, the conversation display will
transition to a hidden state before the character
name is updated, and then it will be shown again.
If this is true, the conversation display will
transition to a hidden state before the displayed
text is updated, and then it will be shown again.
Whether the active conversation display should
be switched to another conversation display
whenever a character name change is detected. If
this is true, then the Dialogue Display will
attempt to find the conversation display with a
Display ID which is the same as the new
character name and use that display.

Autoplay Settings

Setting

Description

Time Per Word

Min Convo Time

Convo Line Delay

The amount of time to allot to each word in a line
of dialogue when calculating a display time for
the line (Note that if audio is assigned to the
dialogue, the time will be determined by the
length of the audio clip).

The minimum amount of time a line of dialogue
should be displayed, despite word count.

An additional amount of time which is added to
the display time for a line of dialogue.

Option Settings

Setting

Description

Present Options Automatically

59

Whether options should be presented
automatically to the player. If this is false,
options won’t be shown until the player continues.

Setting

Description

Option Delay Mode

Option Delay

Determines how long the display should wait
before presenting options to the player when
presenting options automatically. This can be set
to present options immediately when the last line
of dialogue is reached in a conversation node, or
to present options after a delay or after audio for
the prior line of dialogue has been completed, or a
combination of those.

When options are to be presented after a delay,
this specifies the time period which the Dialogue
Display will wait before displaying options.

Continuation Settings

Setting

Description

Use Continue Display

Continuation Mode

Continuation Delay

Whether the continue display should be used to
alert the player that they may continue to the
next line of dialogue.

Specifies when the player is allowed to continue to
the next line of dialogue. This can be set to allow
continuation immediately, or to wait for a delay
or audio on the current line of dialogue to finish
playing, or a combination of both.

When continuation is to be allowed after a delay,
this is used to specify the duration of that delay
before allowing continuation on each line of
dialogue.

Dialogue Listeners

Dialogue Listeners which will be called as events occur during dialogue playback and display events.

Display Events

Event Name

Description

On Continue Enabled
On Continue Disabled

On Option Selection Enabled

60

Called whenever the player is allowed to continue
to the next line of dialogue by pressing a button.
Called whenever continuation to the next line of
dialogue is disabled.

Called whenever options are presented and the
player is permitted to make a selection.

Event Name

Description

On Option Selection Disabled

Called after an option has been chosen by the
player and options can no longer be selected.

Dialogue Events

Event Name

Description

On Continue

On Display Options
On Option Chosen
On Display Line

On Dialogue Entered
On Dialogue Exited
On Exit Completed
On Story

On Variable Updated

On Character Changed
On Audio Started

On Audio Completed
On Activate Key

On Wait

On Conversation Ending
On Node Changed

On Pause

Called whenever dialogue playback continues to
the next line of dialogue, or in some cases, the
next node.

Called whenever dialogue options are to be
presented to the player.

Called whenever a dialogue option has been
chosen/finalized.

Called whenever a line of dialogue is to be
displayed.

Called whenever dialogue playback begins.
Called whenever dialogue playback ends.
Called one frame after dialogue playback ends.
Called whenever a story node is encountered
during dialogue playback.

Called whenever a dialogue variable’s value is
changed.

Called whenever a character change is detected.
Called whenever audio playback starts for a line
of dialogue.

Called whenever audio playback stops or finishes
for a line of dialogue.

Called whenever a line of dialogue is being
processed.

Called whenever a Wait node is encountered
during dialogue playback.

Called whenever dialogue playback reaches the
last line of dialogue in a Conversation node.
Called whenever dialogue playback moves from
one node to another.

Called whenever a Pause node is encountered
during dialogue playback.

Components

Conversation Displays

Conversation Displays are used to show lines of dialogue to the player, and can also show information
about a speaking character, such as their name, or image.

Using Multiple Convo Displays

Multiple different Conversation Displays can be active at a time,

making it possible to have different conversation displays for different characters.

To target a specific Conversation Display and show a line of dialogue on it, just do the following:

Option Settings

B5E s Automaticall «

AFTER_AUDIO_OR_DELAY

Figure 57: Option Settings

Continuation Settings
itinue Display?

itinuation Mode AFTER_AUDIO_OR_DELAY

Continuation Delay 1

Figure 58: Continuation Settings

1. Set the Display ID on the Conversation Display.
2. Add a [target:myDisplayID] tag to a line of dialogue to switch to that Conversation Display
during dialogue playback.

If you don’t want to use [target] tags, alternatively, you can set the Display ID for a Conversation
Display to the name of your speaking character (must be the same as in the Conversation Node in a
Dialogue Asset) and set the ‘Switch Convo Display On Character Change’ flag of the Dialogue
Controller you're using to ‘true’. Then the active Conversation Display will switch automatically
whenever the speaking character changes.

Conversation Display Settings

Display ID

The Display ID of the Conversation Display.

General Settings

Setting Description

Force Standard Text Use Whether the Option Display should use
non-TextMeshPro text components, even when
TextMeshPro is installed.

Dialogue Listeners

List is Empty

Figure 59: Dialogue Listeners

62

Setting

Description

Hide on Awake

When set to true, the Conversation Display will
be hidden when Awake() is called on the

component.

Font Settings

Setting

Description

Language Font Overrides

Override Font Size Settings

Min Font Size

Max Font Size

If set to a LanguageFontOverrides asset, the
display will controls font settings on a
per-language basis on all text components within
it.

When set to true, all text components in the
display which are set to use auto-sizing will use
the minimum and maximum font sizes set in the
Font Settings.

The minimum font size to use on all text
components in the display when in auto-sizing
mode.

The maximum font size to use on all text
components in the display when in auto-sizing
mode.

Conversation Text Settings

Setting

Description

TMP Convo Text

Convo Text

Text Display Mode

Words Per Second

Characters Per Second

Append Delimiter

The TextMeshPro text component to use when
displaying lines of dialogue (only when
TextMeshPro is installed and enabled).

The Text component to use when displaying lines
of dialogue.

Determines how text is displayed when a line of
dialogue is shown. If set to FULL, the entire line
of dialogue is shown immediately. If set to
BY__WORD, the text will be displayed one word
at a time until the full line of dialogue is displayed.
If set to BY CHARACTEr, each character will
be added to the displayed text, one-by-one until
the whole line of dialogue is shown.

When in BY_ WORD mode, this determines how
many words are shown per second when a line of
dialogue is being shown.

When in BY CHARACTER mode, this
determines how many characters are shown per
second when a line of dialogue is being shown.
The text to add between the currently displayed
text and any text which is appended via an
Append node.

63

Character Mame T Cha erMameT

Character Name Text rameT

Character Name und Ime ; oundlm:

Animation Settings
Animati

Animat

4

isplay Panel Events

onversation Display Events

Figure 60: Conversation Display Settings

Figure 61: Conversation Display ID Settings

64

=

General Settings

Fr sTanda

Hide on Awake?

Figure 62: Conversation Display General Settings

Font Settings
Language Font Overrides Mone (Language Font Overrides)
«+ QOverride Font Size Settings
Min Font

Max Font Size

Figure 63: Conversation Display Font Settings

Conversation Text Settings
TMP Convo Text zonvoText (TMP) (Text Mesh Pro UGUI)

Convo Text HConvoTe dard) (Text)

Display Mode YW_CHARACTER

Characters Per Second

Append Delimiter

Figure 64: Conversation Display Text Settings

65

Character Name Settings

Character Name Settings

TMP Character Name T
Character Name Text

Character Mame Ba

CharacterMameText

B CharacterbameTe

Figure 65: Conversation Display Character Name Settings

Setting

Description

TMP Character Name Text

Character Name Text

Character Name Background Image

The TextMeshPro text component to use when
displaying a character name (only when
TextMeshPro is installed and enabled).

The Text component to use when displaying a
character name.

The background image used for the character
name panel. Note that this is only used for
applying styles and doesn’t have to be set.

Animation Settings

Animation Settings

Animation Type
Animation Curve

Animation Time

Figure 66: Conversation Display Animation Settings

These settings affect how the conversation display transitions between being hidden and being shown

(as needed).

Setting

Description

Animation Type

Animation Curve

Animation Time

66

When in NONE mode, the conversation display
will be hidden and shown immediately (when
appropriate) rather than using a transition
animation. If in FADE mode, all image and text
components will be hidden and shown using alpha
fading. The ‘SLIDE’ modes will cause the display
to be shown and hidden by sliding it in and out of
the canvas as needed.

An animation curve which defines the timing
curve for the animation.

The amount of time the show/hide transition
should take.

Setting

Description

Return to Original Position

When in ‘SLIDE’ mode, if this is set to ‘true’, the
display will be forced to return to its original
position when being shown. If set to false, the
display will move into the view of the canvas and
stop once it is fully visible.

Images

Images

Mumber of Images

Image 1

= Backe

= Backe

E Foregroundlma

Jroundlmag

4

jroundimage’ (Image)

? (Image)

: (Image)

& Borderlmage (I

Figure 67: Conversation Display Image Settings

The image components used by the conversation display. Assigning images here is optional since these
references to the images are only used to apply styles to the display.

Convo Listeners

Conversation Display Listeners can be added to this list to implement functionality based on Conversation
Display related events, such as the text or character name being updated.

Display Panel Events

Event Name

Description

On Hide Start
On Hide Complete

On Show Start
On Show Complete

Called whenever the panel begins being hidden.
Called whenever the panel has finished being
hidden.

Called whenever the panel begins being shown.
Called whenever the panel finishes being shown.

Conversation Display Events

Event Name

Description

On Character Name Updated
On Conversation Text Updated

On Reset

Called whenever the character name is updated
on the conversation display.

Called whenever the conversation text is updated
on the conversation display.

Called whenever the conversation display is reset.

67

Convo Listeners

List is Empty

Figure 68: Conversation Listener Settings

Speech Bubbles

Conversation Displays can exist as standalone objects in a scene, which allows us to set up speech
bubbles, also known as World Space Conversation Displays.

Free-floating Converation Displays typically need to make use of a Screen Space Display in order to
handle the timing and transition of lines of dialogoue and in case dialogue options need to be shown to
the player. Because of this, if you decide to use the Speech Bubble presets included with EasyTalk, you
still need to have a Screen Space Dialogue Ul in your scene, even if the Screen Space Ul itself is never
shown to the player. If you want to create a speech bubble which works completely independently of a
Screen Space Dialogue Display, read the section about Independent Speech Bubbles.

Figure 69: A Speech Bubble above a character

There are some prefabs for speech bubbles in the ‘Prefabs/Dialogue Displays/Speech Bubbles/’
folder which you can drag and drop into your scene, or onto your characters.

In order to use speech bubbles, you should do one of the following;:

68

e Set the Conversation Display of your character’s Dialogue Controller to the Speech Bubble.

e Set the “Switch Convo Display on Character Change” setting to ‘true’ on your Dialogue Display
(under General Settings). This will make the Dialogue Display automatically switch to whichever
Conversation Display (Speech Bubble) has a Display ID matching your character’s name (set in
Conversation Nodes).

o Use [target] tags in your conversation text to target a specific Conversation Display (Speech
Bubble).

e Manually change the Conversation Display being used by your Dialogue Display as needed via
code.

When using [target] tags or automatic convo display switching based on character name, make sure you
set the Display ID of your Speech Bubble / Conversation Display to the name of your character that
uses the speech bubble.

Independent Speech Bubbles If you want, you can create a speech bubble which operates
completely independently of a Dialogue Display, such as a Screen-Space Display. The easiest way to do
so is:

1. Add a Dialogue Controller (or Area Dialogue Controller) to your character.

2. Set the Dialogue Controller’s ‘Use Dialogue Display’ property to unchecked, or false.

3. Create a subclass of DialogueListener, add a component of the same type to your character
somewhere, then add the component to the Dialogue Controller’s ‘Dialogue Listeners’ property.

4. Add a world-space canvas Ul to the scene, such as above a character’s head. (Note: In the
example provided here, it should contain a Text component for displaying lines of
dialogue).

5. Set the Dialogue Controller and Text object on your custom component.

Whenever PlayDialogue() is called on the Dialogue Controller, it will call methods on your Dialogue
Listener component which can then update the text as lines of dialogue are processed by the controller.

As an example, you might make a class called SpeechBubble which looks like this:

using UnityEngine.UT;
using EasyTalk.Controller;

//Create a subclass of DialogueListener so we can override methods called by the Dialogue Controller.
public class SpeechBubble : DialoguelListener

{
//The Dialogue Controller which will control the speech bubble
[SerializeField] private DialogueController dialogueController;

//The Text component which we will display lines of dialogue on
[SerializeField] private Text dialogueText;

//The amount of time (in seconds) to show each line of dialogue before moving on to the next one
[SerializeField] private float timeBetweenLines = 3.0f;

public void OnDialogueEntered(string entryID)

{
this.SetActive (true);
}

public override void OnDialogueExited(string exitID)

{

69

this.SetActive(false);

}
public override void OnDisplayLine(ConversationLine line)
{
dialogueText.text = line.Text;
StartCoroutine (WaitToContinue) ;
}
public IEnumerator WaitToContinue ()
{
yield return new WaitForSeconds(timeBetweenLines) ;
dialogueController.Continue();
}

}

Then just add a SpeechBubble component to your character and set it up as described and you have
an independently working speech bubble! :smile:

If you use the approach in this example, be aware that it will not support handling dialogue options by
default, so make sure that your controller either uses a Dialogue asset without option nodes encountered
during dialogue playback, or handle the nodes by overriding the OnDisplayOptions() method and
calling ChooseOption() on the Dialogue Controller some time after options are displayed, otherwise the
Dialogue Controller will get stuck during dialogue playback.

Option Displays

Option Displays are used to present options to the player during dialogue playback. This happens
whenever the conversation flows to an Option Node.

There are 3 pre-existing types of Option Displays that are included with EasyTalk:

1. List Displays
2. Scrollable List Displays
3. Directional Displays

Read on to learn more about the different Option Display types.

List Displays

List Displays show a list of options to the player, with either a horizontal row or vertical column of
dialogue option buttons. These types of displays are usually recommended when you know that you
will only have a limited number of options presented to the player at any given time, but they can also
be set to Dynamic, where new option buttons will be added to the display dynamically as needed.

70

List Option Display Settings
Option List Display (Script)
Display 1D

General Settings

ls Dynamic?

Option Buttons

Animation Settings
Animation Type
Animation Curve
Animation Time

Return to Original Position

roundimagel (Image)

ion Display Listeners

Display Panel Events

Option Display Events

Figure 70: List Option Display Settings

Display ID The Display ID of the Option Display.

General Settings

71

Setting Description

Force Standard Text Use Whether the Option Display should use
non-TextMeshPro text components, even when
TextMeshPro is installed.

Reverse Controls If this is true, the input controls for choosing the
next/previous option will be reversed from the
default setting.

Is Dynamic Set this to true if you want the display to
automatically create new dialogue option buttons
during gameplay as needed. It will do so by
cloning the first Dialogue Button in the Option
Buttons List.

Font Settings

Setting Description

Language Font Overrides If set to a LanguageFontOverrides asset, the
display will controls font settings on a
per-language basis on all text components within
it.

Override Font Size Settings When set to true, all text components in the
display which are set to use auto-sizing will use
the minimum and maximum font sizes set in the
Font Settings.

Min Font Size The minimum font size to use on all text
components in the display when in auto-sizing
mode.

Max Font Size The maximum font size to use on all text
components in the display when in auto-sizing
mode.

Option Buttons Used to assign the Dialogue Buttons used for choosing options in the display. Any
existing Dialogue Buttons used by the Option Display must be set here prior to entering Play mode. If
buttons are dynamically created during runtime, they are automatically added to this list.

Animation Settings These settings affect how the option display transitions between being hidden
and being shown (as needed).

Setting Description

Animation Type When in NONE mode, the option panel will be
hidden and shown immediately (when
appropriate) rather than using a transition
animation. If in FADE mode, all image and text
components will be hidden and shown using alpha
fading. The ‘SLIDE’ modes will cause the display
to be shown and hidden by sliding it in and out of
the canvas as needed.

72

Setting

Description

Animation Curve
Animation Time

Return to Original Position

An animation curve which defines the timing
curve for the animation.

The amount of time the show/hide transition
should take.

When in ‘SLIDE’ mode, if this is set to ‘true’, the
display will be forced to return to its original
position when being shown. If set to false, the
display will move into the view of the canvas and
stop once it is fully visible.

Images The image components used by the option display. Assigning images here is optional since
these references to the images are only used to apply styles to the display.

Option Display Listeners

Option Display Listeners can be added to this list to implement func-

tionality based on Option Display related events, such as the options being set or an option being

selected or chosen by the player.

Display Panel Events

Event Name

Description

On Hide Start
On Hide Complete

On Show Start
On Show Complete

Called whenever the panel begins being hidden.
Called whenever the panel has finished being
hidden.

Called whenever the panel begins being shown.
Called whenever the panel finishes being shown.

Option Display Events

Event Name

Description

On Options Set

On Option Selected
On Option Changed

On Option Chosen

Called whenever the dialogue options to display
are set on the option display.

Called whenever the player selects an option.
Called whenever the player switches their
selection from one option to another.

Called whenever the player chooses/finalizes their
option.

Scrollable List Displays

73

7 K

Scrollable List Displays are similar to List Displays, but they allow you to display an unlimited number
of options to the player in a scrollable area. This is useful if you have a potentially large number of
options that you need to provide to the player and you want to keep the options restricted to a certain
space on the screen.

Scrollable List Option Display Settings

Display ID The Display ID of the Option Display.

General Settings

Setting Description

Force Standard Text Use Whether the Option Display should use
non-TextMeshPro text components, even when
TextMeshPro is installed.

Reverse Controls If this is true, the input controls for choosing the
next/previous option will be reversed from the
default setting.

Is Dynamic Set this to true if you want the display to
automatically create new dialogue option buttons
during gameplay as needed. It will do so by
cloning the first Dialogue Button in the Option
Buttons List.

Font Settings

Setting Description

Language Font Overrides If set to a LanguageFontOverrides asset, the
display will controls font settings on a
per-language basis on all text components within
it.

Override Font Size Settings When set to true, all text components in the
display which are set to use auto-sizing will use
the minimum and maximum font sizes set in the
Font Settings.

74

Setting Description

Min Font Size The minimum font size to use on all text
components in the display when in auto-sizing
mode.

Max Font Size The maximum font size to use on all text
components in the display when in auto-sizing
mode.

Option Buttons Used to assign the Dialogue Buttons used for choosing options in the display. Any
existing Dialogue Buttons used by the Option Display must be set here prior to entering Play mode. If
buttons are dynamically created during runtime, they are automatically added to this list.

Animation Settings These settings affect how the option display transitions between being hidden
and being shown (as needed).

Setting Description

Animation Type When in NONE mode, the option panel will be
hidden and shown immediately (when
appropriate) rather than using a transition
animation. If in FADE mode, all image and text
components will be hidden and shown using alpha
fading. The ‘SLIDE’ modes will cause the display
to be shown and hidden by sliding it in and out of
the canvas as needed.

Animation Curve An animation curve which defines the timing
curve for the animation.

Animation Time The amount of time the show/hide transition
should take.

Return to Original Position When in ‘SLIDE’ mode, if this is set to ‘true’, the

display will be forced to return to its original
position when being shown. If set to false, the
display will move into the view of the canvas and
stop once it is fully visible.

Images The image components used by the option display. Assigning images here is optional since
these references to the images are only used to apply styles to the display.

Option Display Listeners Option Display Listeners can be added to this list to implement func-
tionality based on Option Display related events, such as the options being set or an option being
selected or chosen by the player.

Display Panel Events

Event Name Description

On Hide Start Called whenever the panel begins being hidden.

On Hide Complete Called whenever the panel has finished being
hidden.

75

Event Name Description

On Show Start Called whenever the panel begins being shown.
On Show Complete Called whenever the panel finishes being shown.

Option Display Events

Event Name Description

On Options Set Called whenever the dialogue options to display
are set on the option display.

On Option Selected Called whenever the player selects an option.

On Option Changed Called whenever the player switches their
selection from one option to another.

On Option Chosen Called whenever the player chooses/finalizes their
option.

Directional Displays

Directional Displays operate a bit differently to the other Option Display types, in that they allow
the player to choose an option based on an input direction, from a joystick or arrow keys for example.
Directional Displays also allow for an image to be linked to each option, and when those options are
selected (highlighted), the color of the linked image will change.

Directional Option Display Settings

Display ID The Display ID of the Option Display.

General Settings

Setting Description

Force Standard Text Use Whether the Option Display should use
non-TextMeshPro text components, even when
TextMeshPro is installed.

76

Scrollable Option Display (Script)

Display 1D

General Settings

gue Button)

B OptionButtons (Dialogue Button)

Animation Curve

Animation Time

lay Listeners

Display Panel Events

Option Display Events

Figure 71: Scrollable Option Display Settings

7

Directional Option Display (Script)

Display 1D

Directional Display Settings
Center Transform
P E N EE
Use Option Butto
Link Mermal
Link Disable
Link Highligt
Link Presse

Animation Settings
Animation Type
Animation C

Animation Time

Images

ay Listeners
Display Panel Events

Option Display Events

Figure 72: Directional Option Display Settings

78

Font Settings

Setting Description

Language Font Overrides If set to a LanguageFontOverrides asset, the
display will controls font settings on a
per-language basis on all text components within
it.

Override Font Size Settings When set to true, all text components in the
display which are set to use auto-sizing will use
the minimum and maximum font sizes set in the
Font Settings.

Min Font Size The minimum font size to use on all text
components in the display when in auto-sizing
mode.

Max Font Size The maximum font size to use on all text
components in the display when in auto-sizing
mode.

Directional Display Settings

Setting Description

Center Transform This is the transform which will be used to
calculate the direction to an option button if there
is no custom direction vector defined for a button.

Main Image The main image used for the display. Note that
this is only used for applying styles.
Use Option Button Colors For Links When set to ‘true’, directional option element link

images will inherity their normal, highlighted,
pressed, and disabled colors from the option
buttons they are associated with.

Link Normal Color The color to use on linked images when in ‘normal’
mode and not inheriting colors from buttons.

Link Disabled Color The color to use on linked images when in
‘disabled” mode and not inheriting colors from
buttons.

Link Highlight Color The color to use on linked images when in
‘highlighted” mode and not inheriting colors from
buttons.

Link Pressed Color The color to use on linked images when in
‘pressed’ mode and not inheriting colors from
buttons.

Option Element Configuration Directional Option Elements are used to associate a Dialogue
Button with a Vector2 direction so that when the player presses a joystick, D-Pad, or arrow keys in a
certain direction, the Dialogue Button closest to that direction, and the option associated with it, can
be selected.

Each Directiona Option Element also includes a field for a link image. Link images can be set up to
change color when the associated option is selected, so they provide some additional display functionality
in the option display.

79

The settings for Directional Option Elements are described below.

Option Element Configuration

Option Element 2
on Element 3

Option Element 4

Figure 73: Directional Option Element Settings

Setting Description

Option Button The Dialogue Button for the option.

Linked Image The link image for the option.

Use Custom Direction Vector If set to ‘true’, a custom direction vector will be

attributed to the option and used instead of a
calculated direction based on the center

transform.
Direction Vector The custom direction vector to use.
Activation Mask The activation mask is used to define when the

option is active and used based on how many
options are being presented to the player. If one
option is shown and the first box (marked by a 1)
is checked, then the option will be used to display
that option. If the first box were left unchecked,
then another option would be used to display the
option.

Animation Settings These settings affect how the option display transitions between being hidden
and being shown (as needed).

80

Setting

Description

Animation Type

Animation Curve

Animation Time

Return to Original Position

When in NONE mode, the option panel will be
hidden and shown immediately (when
appropriate) rather than using a transition
animation. If in FADE mode, all image and text
components will be hidden and shown using alpha
fading. The ‘SLIDE’ modes will cause the display
to be shown and hidden by sliding it in and out of
the canvas as needed.

An animation curve which defines the timing
curve for the animation.

The amount of time the show/hide transition
should take.

When in ‘SLIDE’ mode, if this is set to ‘true’, the
display will be forced to return to its original
position when being shown. If set to false, the
display will move into the view of the canvas and
stop once it is fully visible.

Images The image components used by the option display. Assigning images here is optional since
these references to the images are only used to apply styles to the display.

Option Display Listeners

Option Display Listeners can be added to this list to implement func-

tionality based on Option Display related events, such as the options being set or an option being

selected or chosen by the player.

Display Panel Events

Event Name

Description

On Hide Start
On Hide Complete

On Show Start
On Show Complete

Called whenever the panel begins being hidden.
Called whenever the panel has finished being
hidden.

Called whenever the panel begins being shown.
Called whenever the panel finishes being shown.

Option Display Events

Event Name

Description

On Options Set

On Option Selected
On Option Changed

On Option Chosen

Called whenever the dialogue options to display
are set on the option display.

Called whenever the player selects an option.
Called whenever the player switches their
selection from one option to another.

Called whenever the player chooses/finalizes their
option.

81

Dialogue Buttons

Dialogue Buttons are used to provide interactive components which can display dialogue options to the
player. They provide functionality to change the color of the button’s text and an image component
based on the state of a button, such as when it is hovered over or pressed.

Button Settings

Text Settings

Text Settings

tandard) (Text)

AP) (Text Mesh Pro U

Figure 74: Dialogue Button Text Settings

Setting Description

Text The Text component which will be used to
display the button text.

Text Mesh Pro Text If TextMeshPro is enabled, this should be the

TextMeshPro component which will be used to
display the button text.

Normal Text Color The color to use on the button text when in
‘normal’ mode.

Highlighted Text Color The color to use on the button text when in
‘highlighted” mode.

Pressed Text Color The color to use on the button text when in
‘pressed’ mode.

Disabled Text Color The color to use on the button text when in

‘disabled’ mode.

Image Settings

Setting Description

Background Image The image component of the button which will
have its color updated whenever the state of the
button changes.

Normal Button Color The color to use on the button image when in
‘normal’ mode.

82

Setting Description

Highlighted Button Color The color to use on the button image when in
‘highlighted” mode.

Pressed Button Color The color to use on the button image when in
‘pressed’ mode.

Disabled Button Color The color to use on the button image when in

‘disabled’ mode.

If you want to use multiple Images in a Dialogue Button, you can add as many as you want, but the
Dialogue Button only supports changing the color of 1 button, so make sure you set the Background
Image setting to the right Image.

Audio Settings

Setting Description

Audio Source The Audio Source to use for playing button
interaction sounds.

Hover Sound The Audio Clip to play when the button is

highlighted /selected /hovered.

Events

Event Name Description

On Click Called whenever the player clicks on the button.

On Enter Called whenever the mouse moves over the
button.

On Leave Called whenever the mouse leaves the button.

On Press Called whenever the player presses the mouse
over the button.

On Normal Called whenever the button goes into ‘normal’
mode.

On Highlighted Called whenever the button goes into ‘highlighted’
mode.

Continue Displays

Continue Displays just provide a feeback mechanism to alert the player that they may move on to the
next line of dialogue.

The default Continue Displays included as part of the Dialogue Display prefabs also include a Dialogue
Button component to allow the player to continue by clicking on the Continue Display.

If you don’t want to use the Continue Display, you can easily turn it off by setting the Dialogue
Display’s ‘Use Continue Display’ setting to ‘false’.

Settings

83

Image Settings

Figure 75: Dialogue Button Image Settings

Audio Settings
Audio Source OptionButton (Audi

Hover Sound A7 _Xylophone

Figure 76: Dialogue Button Audio Settings

Continue Display (Script)
Display 1D continue

Text Settings
Text
Text Mesh Pro Text

Image Settings

Animation Settings

Animation Type
Animation Curve

Animation Time

Figure 77: Continue Display Settings

84

Display Settings

Display ID

Figure 78: Continue Display ID Settings

The Display ID of the Continue Display.

Text Settings

Text Settings

T

eyt H ContinueTe

Text Mesh Pro Text ContinueTe

Figure 79: Continue Display Text Settings

Setting Description

Text The Text component to use when displaying text
alerting the player that they may continue.

Text Mesh Pro Text The TextMeshPro text component to use when

displaying text alerting the player that they may
continue (only when TextMeshPro is installed and
enabled).

Image Settings

: Settings

ound Imag = B groundimage (Image)

Figure 80: Continue Display Image Settings

The image component used by the continue display. Assigning an image here is optional since the
reference to the image is only used to apply styles to the display.

Animation Settings

These settings affect how the continue display transitions between being hidden and being shown (as
needed).

85

Animation Settings

Animation Type
Animation Curve

Animation Time

Figure 81: Continue Display Animation Settings

Setting Description

Animation Type When in NONE mode, the continue display will
be hidden and shown immediately (when
appropriate) rather than using a transition
animation. If in FADE mode, all image and text
components will be hidden and shown using alpha
fading. The ‘SLIDE’ modes will cause the display
to be shown and hidden by sliding it in and out of
the canvas as needed.

Animation Curve An animation curve which defines the timing
curve for the animation.

Animation Time The amount of time the show/hide transition
should take.

Return to Original Position When in ‘SLIDE’ mode, if this is set to ‘true’, the

display will be forced to return to its original
position when being shown. If set to false, the
display will move into the view of the canvas and
stop once it is fully visible.

Layouts

There are many different Dialogue Display UI layouts that come with EasyTalk. You can find these in
the ‘Prefabs/Dialogue Displays/Screenspace/’ folder.

Op4, opl
r
ops (@) >op2
Op6 Op3

Dialogue_UI_Direc. Dialogue_UI_Direc. Dialogue_UI_List...

apt o2 0p3
ABC 1'2'3/ABC| [ABC1/2'3

Dialogue_UI_ListR... Dialogue_UI_ListR.. Dialogue_UI_ListR..

Figure 82: Dialogue Display Prefabs included with EasyTalk

The default layouts are categorized and named based on the following:

e The type of option display they use (scrollin8g§ list, or directional)

o The position (left, right, top, or bottom)

o The orientation (horizontal or vertical) of the conversation display

e Whether the option display is contained in the same space as the conversation display or outside
of it (internal or external)

A list of the default layout prefabs along with a preview of each layout in different styles is shown
below.

Directional Layouts

This is an example of a conversation an NPC might have. It can easily be modified to
nee wn style needs an ot

87

Continue

onversation an NPC
night have
easily be modified to
your own style
seds and whatnot

option 1
Option 2

Option 3

Continue

Jiamy,

This is an exanple of a conversation an NPC might have. It can easily be modified to meet your
own style needs and whatnot

Continue

88

Option 1

Scrolling Layouts

Continue

Jimmy
This is an example of N This is'an example of
a conversation an NPC Z / a conversation an NPC
might have. It can / might have. It can
easily be modified to easily be modified to
meet your own style meet your own style
needs and whatnot / \ needs and whatnot
option 1
Option 2
Option 3
Option 4
Option 5

Continue

Customizing Layouts

Layouts can be modified in all sorts of ways using standard Unity rect transforms and changing the
layout elements on various components within each Dialogue Display.

89

It’s best to start with whichever layout is closest to what you want. For example, you know that you
want a scrollable list of options, you should choose one of the scrollable layouts to start with.

Each preset has all of its key components within a main container object, called ‘Display’; this includes
the conversation display, option display, and continue display.

If you want to resize a display or change where it is positioned on screen, the easiest way to do so is
using the Rect Tool and Move Tool in the editor.

Rect Tool

Figure 83: Rect Tool

You can also modify each component using the Rect Transform settings to get something you are happy
with.

Styling

All components of the EasyTalk Dialogue System are built on top of Unity standard Ul components,
and so can be customized in the same way, but EasyTalk also provides its own style system for quickly
swapping the style of a Dialogue Display, and quickly accessing and changing components via the
Dialogue Style Manager.

The Style Manager
The Dialogue Style Manager makes changing styles of Dialogue Displays easy.

To open the Dialogue Style Manager, in the main menu, go to Tools -> EasyTalk -> Dialogue Style
Manager.

Once you’ve opened the style manager, just select a Dialogue Display GameObject in the Hierarchy
and the style manager will display settings for adjusting the display’s style.

The Dialogue Style Manager provides access to quickly change many different UI settings for the
Conversation Display, Option Display, and Continue Display.
Conversation Display Settings

The Dialogue Style Manager provides quick access for changing the following settings on Conversation
Displays: - The character name text and background - The conversation text and images for the
background and foreground of the conversation display area

90

e Manager

Option Panel Style

Button Imag
Button A

Figure 84: The Dialogue Style Manager

91

Option Display Settings

The Dialogue Style Manager provides quick access for changing the following settings on Option
Displays: - The background and foreground images for the panel the option buttons are contained
within - The primary option button image - The colors attributed to various states for the option
buttons - The text of the option buttons

When a setting is modified for the option buttons using the style manager, ALL option buttons are
updated to match.

Continue Display Settings

The Dialogue Style Manager provides quick access for changing the following settings on Continue
Displays: - The text of continue display - the background image used for the continue display - If the
continue display is also a Dialogue Button, the style manager provides access to change the colors for
the background image based on the button state

Style Presets
Styles affect both the colors and the sprites/images used in the dialogue display UL

There are a number of style presets which are included with EasyTalk that can be applied to Dialogue
Displays.

To use a style preset, just go to the Dialogue Style Manager after selecting a Dialogue Display, and you
can either choose a style from the ‘Choose Style’ dropdown, or click on the arrow buttons to change
the style one-by-one.

Previews of some of the styles included with EasyTalk are shown below.

option

Option

B
N |

This is an example of a conversation an NPC might have. It can easily be modified to meet your
own style needs and whatnot

92

N

Continue...

CONTINUE...

THIS IS AN EXAMPLE OF A CONVERSATION AN NPC MIGHT HAVE. IT CAN EASILY BE MODIFIED TO MEET YOUR OWN
STYLE NEEDS AND WHATNOT.

f

Jimumyy Continus Jimmy

This is an example of @ conversation an NPC might have. Tt can casiliy be modified to meet gour own siyle
Thisis an example of a conversation an TNDC might have. Tt can easily be modified to meet your own style needs and whatnot.
needs and whainat

= ; B
|, Dialogue Style Manager

Change Style To...

Chan r_] & Colar Theme... Armory.asset
Candycane.asset
Classic_DARK.asset
Classic_DARK_Transparent.asset
Classic_LIGHT.asset
Classic_LIGHT_Transparent.asset
Cyberworld.asset
Feudallapan.asset
Freemason.asset
OldWest.asset
PaddedMansion.asset
Secretlab.asset
Shadowrealm.asset
TextOnly_DARK.asset
TextOnly_LIGHT.asset
TextOnly_MEDIUM,.asset
World5tage.asset

Figure 85: Style Presets

94

Creating Style Presets
EasyTalk makes it easy to create your own style presets.

If you modify the settings of a dialogue display, you can save the style settings of any default components,
such as conversation panel images and dialogue buttons by using the “Save Style...” button in the
Dialogue Style Manager.

Changing Styles in Play Mode

If you want to change styles while in play mode, you can use the static methods of the Dialogue Style
Manager:

[SerializeField]
private DialogueDisplay display;

[SerializeField]
private DialogueStyle style;

//Change the style of a dialogue display during runtime.
DialogueStyleManager.ApplyStyle(display, style);

Color Themes
Color Themes are used to quickly change the color scheme of the dialogue display UL

To change color themes for a Dialogue Display, just choose a color theme from the ‘Choose Color
Theme’ dropdown in the Dialogue Style Manager, or use the arrow buttons to change color themes one
at a time.

Not all color themes go well with all styles/image component combinations. Try some different things
out and feel free to adjust the colors and style settings yourself! :smile:

Manual Style Changes

Since the UI of Dialogue Displays is built on top of standard Unity Ul components, you can easily
modify Dialogue Displays to suit your own designs by resizing components, adding images or text
elements, changing sprites and colors of various elements, modifying the positions of components, etc..
Animation

The EasyTalk system uses the UTAnimator class to animate panels, text, and image components.

It supports sliding animations for showing and hiding components, and it also supports fading animations
on all text and image components within a Dialogue Panel (Conversation Displays, Option Displays,
and Continue Displays).

So if you add your own text or image components to an existing display panel, the animation will work
on those components as well.

Player Input

EasyTalk supports the new Unity Input System as well as the old Input Manager.
Input is handled by a Dialogue Input Handler component which is added to each Dialogue Display.

95

Custom Input Handling

If you would rather use your own input system or control the dialogue system differently, you can look
at the DialoguelnputHandler class to see how input is handled and how it controls the Dialogue Display
to get a better idea of how to implement your own or modify the DialogueInputHandler yourself.

In general, you will likely want to support the following:

o Continuing to the next line of dialogue
¢ Selecting options
o Finalizing the option choice

Input Handler Settings

The settings shown in the Unity Editor will depend on which input system you are using, but brief
descriptions of settings for each are below.

Input Manager Settings

If you are using the Input Manager, the following settings are shown in the Inspector for a Dialogue
Display under ‘Input Settings’:

Input Name Description

Continue Button Name The name of the button which causes the
conversation to move to the next line of dialogue
during dialogue playback.

Choose Selected Option Button Name The name of the button which causes the
currently selected option to be chosen and
finalized.

Quick Exit Button Name The name of the button which causes the

dialogue playback to be stopped immediately
(only if ‘Allow Quick Exit’ is set to true).

Horizontal Axis Name The name of the horizontal axis to use when
selecting next/previous options and choosing
options in a 2D direction.

DPAD Horizontal Axis Name The name of the horizontal axis for the DPAD.
Used when selecting next/previous options and
choosing options in a 2D direction.

Vertical Axis Name The name of the vertical axis to use when
selecting next/previous options and choosing
options in a 2D direction.

DPAD Vertical Axis Name The name of the vertical axis for the DPAD. Used
when selecting next/previous options and
choosing options in a 2D direction.

Input System Settings

If you're using the newer Input System, you’ll need to have an Input Actions asset for the Dialogue
Display.

The default controls set up on each Dialogue Display are in the ‘Runtime/Resources/settings/Dialoguelnputs.inputactions’
file.

96

If you decide to create your own input actions, you will need to configure the Dialogue Display by telling
it the names of the configured actions to map to specific dialogue actions. Each action is expected to
be of a certain type (button, value (axis), etc.).

The names of the settings provided in the Dialogue Display under ‘Input Settings’ are shown below,
along with brief descriptions of each input action.

Input Actions: The Input Actions asset which the Dialogue Display should use.

Setting Name Action Type Description

Continue Action Name Button The name of the action which
causes the conversation to move
to the next line of dialogue
during dialogue playback.

Next Option Action Name Button The name of the action which
causes the display to select the
next option when options are
being displayed to the player.

Previous Option Action Name Button The name of the action which
causes the display to select the
previous option when options
are being displayed to the
player.

Choose Option Action Name Button The name of the action which
causes the currently selected
option to be chosen and
finalized.

Exit Conversation Action Name Button The name of the action which
causes the dialogue playback to
be stopped immediately (only if
‘Allow Quick Exit’ is set to

true).
Select Option X-Direction Value - Axis The name of the action which
Action Name determines the X value for

selecting an option in a
particular 2D direction (only
applicable when using
Directional Option Displays).
Selection Option Y-Direction Value - Axis The name of the action which
Action Name determines the Y value for
selecting an option in a
particular 2D direction (only
applicable when using
Directional Option Displays).

Localization

The EasyTalk Dialogue System includes a simple, but powerful system for localization so you can easily
make your games support multiple languages. The localization system includes all of the following and
more:

o Translation libraries which can be defined on a dialogue-by-dialogue basis

97

e CSV File Import/Export

¢ One-click Translation with the Google Translate API (requires proper setup)

e An AutoTranslate component for automatically translating text on any Ul componentwhen the
language is changed.

Continue on to learn more about the localization features built into EasyTalk.

Supported Languages

EasyTalk supports over 130 languages out of the box. Supported languages are listed below along with
their ISO-639 codes.

Localizable Language Sets

Localizable Language Sets provide information about various languages, such as their English name,
native name, and ISO-639 language code. The default asset ‘Runtime/Resources/settings/Localizable
Language Set.asset’ contains definitions for 134 languages.

Languages

The complete list of supported languages and their corresponding ISO-639 language codes is listed
below. Use these codes when switching languages during runtime using the EasyTalkGameS-
tate.Instance.Language setting.

Language I1SO-639 code
Afrikaans af
Albanian sq
Ambharic am
Arabic ar
Armenian hy
Assamese as
Aymara ay
Azerbaijani az
Bambara bm
Basque eu
Belarusian be
Bengali bn
Bhojpuri bho
Bosnian bs
Bulgarian bg
Catalan ca
Cebuano ceb
Chinese (Simplified) zh-CN
Chinese (Traditional) zh-TW
Corsican co
Croatian hr
Czech cs
Danish da
Dhivehi dv
Dogri doi
Dutch nl
English en

98

Language

ISO-639 code

Esperanto
Estonian
Ewe

Filipino (Tagalog)

Finnish
French
Frisian
Galician
Georgian
German
Greek
Guarani
Gujarati
Haitian Creole
Hausa
Hawaiian
Hebrew
Hindi
Hmong
Hungarian
Icelandic
Igbo
Ilocano
Indonesian
Irish
Ttalian
Japanese
Javanese
Kannada
Kazakh
Khmer
Kinyarwanda
Konkani
Korean
Krio
Kurdish

Kurdish (Sorani)

Kyrgyz

Lao

Latin
Latvian
Lingala
Lithuanian
Luganda
Luxembourgish
Macedonian
Maithili
Malagasy
Malay
Malayalam

€0
et
ee
fil
fi

fr
fy
gl
ka
de
el
gn
gu
ht
ha
haw
he
hi
hmn
hu
is
ig
ilo
id
ga
it
ja
jv
kn
kk
km
r'w
gom
ko
kri
ku
ckb
ky
lo
la
v
In
It

mai
mg

ml

Language

ISO-639 code

Maltese

Maori

Marathi

Meiteilon (Manipuri)
Mizo

Mongolian
Myanmar (Burmese)
Nepali

Norwegian

Nyanja (Chichewa)
Odia (Oriya)
Oromo

Pashto

Persian

Polish

Portuguese (Portugal, Brazil)
Punjabi

Quechua
Romanian
Russian

Samoan

Sanskrit

Scots Gaelic
Sepedi

Serbian

Sesotho

Shona

Sindhi

Sinhala (Sinhalese)
Slovak

Slovenian

Somali

Spanish
Sundanese

Swahili

Swedish

Tagalog (Filipino)
Tajik

Tamil

Tatar

Telugu

Thai

Tigrinya

Tsonga

Turkish

Turkmen

Twi (Akan)
Ukrainian

Urdu

Uyghur

100

mt
mi
mr
mni-Mtei
lus
mn
my
ne
no
ny
or
om
ps
fa
pl
pt
pa
qu
TO
ru
sm
sa
gd
nso
ST
st
sn
sd
si
sk
sl
SO
es
su
SW
SV
tl
tg
ta
tt
te
th
ti
ts
tr
tk
ak
uk
ur

ug

Language ISO-639 code

Uzbek uz
Vietnamese vi

Welsh cy
Xhosa xh
Yiddish yi

Yoruba yo
Zulu zu

Translation Libraries
Translation Libraries

Translation Library assets are used to store translations for words and lines of text. Each Dialogue
Asset has its own Translation Library, but you can also create Translation Libraries independently via
the ‘Create -> EasyTalk -> Localization -> Translation Library’ menu.

Each Translation Library contains one or more Translation Sets. A Translation Set contains strings for
a particular language.

Translation Libraries have a default/original language which is used to translate lines of dialogue to
other languages.

During dialogue playback, the EasyTalk dialogue system takes the current line of dialogue and looks
for a translation if the EasyTalkGameState language code is different than the default language code.
If a translation is found, the original dialogue text will be replaced by the translation in the Dialogue
Displays.

If you select a Translation Library in the inspector, you can manually update the translations yourself,
or you can import and export the translations to a localization CSV file. For more information on
localization CSV files, see Using CSV Files.

You can also search for text in a Translation Library using the “Search” field in the inspector, or filter
by language code.

Setting the Default Dialogue Language

When writing dialogue, there is a language and font set that is used in the EasyTalk Node Editor and
that language is also used as the original language for translations in Translation Libraries for your
Dialogue Assets.

If you change the language, you will need to update all of your Translation Libraries manually to use
the correct default language, which you can do in the Inspector after selecting each Translation Library.
To select the Translation Library of a Dialogue Asset, expand it in the project browser.

If you manually change the default language in the EasyTalk Editor Settings, you should also restart
the EasyTalk Node Editor if you have it open.

Setting the Writing Language in the Node Editor

You can go to ‘Language -> Set Writing Language’ in the EasyTalk Node Editor menu and choose the
language that the original dialogue will be written in.

101

Import...
Export...

Origin Language EN

Filter ALL

Search

Billy

Bereits zuriick?

Figure 86: Translation Library

Translation L...

Figure 87: Selecting the Translation Library of a Dialogue Asset

102

Setting the Language in the Localization Panel

If you go to ‘Language -> Localization. ..’ in the EasyTalk Node Editor menu, you can change the
default language in the dropdown at the top of the Localization Panel.

Localization Settings
Default Original Language an
Default Font aa Mo

le Translate Project |d gxperimental-4

Localizable Lang 5 r:Localizable Langu

Language Fo

Default Localization Languages 1

Element O

Figure 88: Changing the Default Language in the EasyTalk Node Editor

Changing the EasyTalk Editor Settings

The prior two methods automatically save the default language to a setting in the EasyTalk Editor
Settings ‘Default Original Language’ value. You can find the EasyTalk Editor Settings in ‘Edi-
tor/Resources/settings/’.

Changing Languages During Gameplay

To change languages, just set the language FasyTalk is using by setting the EasyTalkGameS-
tate.Instance.Language value to the new ISO-639 language code.

This will automatically tell each Dialogue Display to update the fonts used on text components to
work with the chosen language, assuming that there is a Language Font Override set up for the chosen
language. If a font override isn’t set up for the chosen language, the original font for the Dialogue
Display will be used.

//Set the current language used by the dialogue system to Spanish (ISO0-639 code 'es')
EasyTalkGameState.Instance.Language = "es";

Language Font Overrides

Language Font Override assets are used to define which fonts should be used when EasyTalk is set to
use a particular language. The default language font override asset includes settings and font overrides
for 82 languages where they are needed, and is sufficient for 134 different languages. The default asset
is ‘Runtime/Resources/settings/Language Font Overrides.asset’ and is set on the EasyTalk Dialogue
Settings asset in the same directory.

103

Original Language: English - English (en) = | X
(S T-R -]] Lraiddld | Ll |
Cebuano - Sugboanon (ce
Chinese (Simplified) - Lzh-CHN)
Chinese (Traditional) - (zh-TW)
Corsican - corsu (co)

Croatlan - hrvatskl jezik (hr)

Czech - Eestina (cs)

Danish - dansk (da)

Dhivehl - s> (dv)
Dogri - =t (doi)

Dutch = Mederlands (nl)

English = English (en)

Esperanto - Esperanto (eo)
Estonian - eesti keel (et)

Ewe - Evegbs (ee)

Filipino (Tagalog) - Wikang Filipino (fil)

Finnish = suomi (fi)
Enter Access Token...

experimental-419521 Translate

Create Localization File...
Import Localizations...

Figure 89: EasyTalk Editor Default Language Setting

104

You can create your own via ‘Create -> EasyTalk -> Localization -> Language Font Overrides’.

CSV Support
Exporting CSV Files
There are two ways to export localizations to a CSV file for editing outside of Unity.

The first way to export localizations is to select the Translation Library Asset you want to export, then
click on the ‘Export. ..’ button to save all localizations to a file. The exported file will also have blank
lines for each line of text in the original language which hasn’t yet been translated.

The second way is to use the Localization Panel in the EasyTalk node editor. Go to ‘Language ->
Localization. ..’ to bring up the panel. There you can choose which languages to export translations
for prior to exporting by toggling them on or off, then click on the ‘Create Localization File...’ button.

When exporting in the EasyTalk Node Editor, the translations can only be exported from the current
Dialogue Asset.

Importing CSV Files

There are two ways to import localizations from a CSV file into a Translation Library.

One way to import CSV files is to use the inspector ‘Import..." button when a Translation Library
asset is selected.

You can also import localizations in the EasyTalk Node Editor via the ‘Import Localizations. ..’ button
in the Language Panel, which can be opened by going to ‘Language -> Localization. ..’ in the menu.
CSV Format

Each localization CSV file has the following columns:

e id - The ID of the line of text.
¢ language - The ISO-639 language code for the text.
o text - The translated text.

The ID is used to match text from one language to another. For example, text with the ‘en’ (English)
language code and an ID of ‘37" might have a Japanese translation with the language code ‘ja’ and the
ID of the translated line would also be ‘37".

All columns are comma-delimited.

Using Google Translation

The EasyTalk Dialogue System provides easy to use automatic translation via Google Translate API
access. In order to use this automatic translation, you will need to set up a Google account and the
Google CLI on your computer.

In order to use the automatic translation feature you will need an active Google Cloud account and
you are solely responsible for any fees required by Google to access their cloud services.

Setting up a Google Cloud Project

Log in to your Google Account in a web browser.

Next, you will need to activate Google Cloud if you haven’t aready by going here: https://console.cloud.google.com/

105

Once you have Google Cloud access, create a new project by clicking on the project dropdown, then
clicking on “New Project” in the top right of the popup dialog.

Select a project [3 NEWPROJECT

Q, search projects and folders

RECENT STARRED
Name D

+ Y §¢ experimental @ experimental 228121
¢ &* PirateGame @ pirate-game-1234

¢ §* SpaceGame @ space-game-414629

Figure 90: Creating a new Google Cloud project

Next, enter the project name you want to use into the “Project Name” text field, then click “Create”.

Enabling Cloud Translation Services

Enable the Cloud Translation API by going to the following link and clicking ‘Enable’:
https://console.cloud.google.com/marketplace /product /google/translate.googleapis.com?hl=en&authuser=1

Set up a Service Account

Go to https://console.cloud.google.com/iam-admin/iam and choose your project from the project
dropdown.

Next, on the left-hand side, click on “Service Accounts”.

Fill in the details of the service account, replacing “my-account-name” with the name you want to give
to the account.

Continue through the remaing steps and click “Done”.

106

= Google Cloud

New Project

You have 23 projects remaining in your quota. Request an increase or

delete projects. Learn more [2

MANAGE QUOTAS A

Project 50156

I Project name *

Project 1D: evident-pipe-419521. It cannot be changed later. EDIT

Location *
[B No organization

BROWSE

Parent organization or folder

CREATE CANCEL

Figure 91: Entering Google Cloud project details

107

é

Q

m ® », @

@

v @ iii

< o

Google Cloud e* experimental «

Product details

XA

OVERVIEW

Cloud Translation API

Google Enterprise API

Integrates text translation into your website or application.

EMABLE TRY THIS API [2 & APl Enabled

PRICING DOCUMENTATION RELATED PRODUCTS

Figure 92: Enabling the Google Cloud Translation API

Free trial status: $300.00 credit and 42 days remaining. Activate your full account to get unlimited access to all of Google Cloud—use any remaining credits, then pay only for what you use.

Go gle Cloud Search (/) for resources, docs, products, and more

IAM & Admin

1AM

Identity & Organization
Policy Troubleshooter
Policy Analyzer m
Organization Policies
Service Accounts
Workload Identity Federat...
Workforce Identity Federa...
Labels

Tags

Setlings

Privacy & Security

Service accounts + CREATE SERVICE ACCOUNT W DELETE +2& MAMAGE ACCESS C REFRESH

Service accounts for project "experimental”
A service account represents a Google Cloud service identity, such as code running on Compute Engine VMs, App Engine apps, or systems running outside

Organization policies can be used to secure service accounts and block risky service account features, such as automatic 1AM Grants, key creation/upload,

= Filter Enter property name or value

D Email Status Name Description Key ID Key creation date OAuth 2 Client ID @ Acl

Figure 93: Creating a new Google Cloud service account

108

Q

»F O

m

€ # v

x

Google Cloud

IAM & Admin

1AM

Identity & Qrganization
Policy Troubleshooter

Policy Analyzer m
Organization Policies

Service Accounts

Workload Identity Federat...

Workforce Identity Federa...

Labels

Tags

Settings

Privacy & Security

Identity-Aware Proxy

Roles

AeadiF | e

&* experimental ¥

é

Search (/) for resources, docs,

Create service account

@ Service account details

Service account name
[my-account-name]

Display name for this service account

Service account ID *
my-account-name

X C |
Email address: my-account-name@experimental-419521.iam.gserviceaccount.com

o

Service account description]

Describe what this service account will do

CREATE AND CONTINUE

Grant this service account access to project
(optional)

© Grant users access to this service account (optional)

oo JR

Figure 94: Populating Google Cloud Service Account Details

109

& Create service account

& Service account details

o Grant this service account access to project
(optional)

© Grant users access to this service account (optional)

Grant access to users or groups that need to perform actions as this service
account. Learn more [£

Service account users role ﬂ ‘

Grant users the permissions to deploy jobs and Yis with this service account

rvice account admins role (7] ‘

Grant users the permission to administer this service account

oo RN

Figure 95: Finishing Google Cloud service account creation

110

Create a Service Account Key

On the service account page, click on the three dots in the right corner, and choose “Manage Keys”.

Service accounts for project "experimental”

A service account represents a Google Cloud service identity, such as cede running on Compute Engine VMs, App Engine apps, or systems running outside Google. Learn more about service accounts. [

Organization policies can be used to secure service accounts and block risky service account features, such as automatic IAM Grants, key creation/upload, or the creation of service accounts entirely. Learn more about service account ion policies. [2

= Filter Enter property name or value

O cemai Status Name 4 Description Key ID Key creationdate OAuth 2 Client ID @ Actions
e R R Nokeys EEE——
age details
Manage permissions
» Manage keys
View metrics
View logs

Disable

Delete

Figure 96: Creating a new Google Cloud service account key

Click on “Add Key”, then choose “Create New Key”.

Choose JSON for the type, then click “Create” to download the new key file to your computer.

Setting up Google CLI

Download and install the Google CLI from https://cloud.google.com/sdk/docs/install-sdk

or you can download directly from https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudSDKInstaller.exe
Now we need to activate the service account using the service account key file we downloaded earlier.

Open a cmd prompt or terminal.

Next find the key file and enter the following command into the command line/terminal, replacing
PATH_TO_KEY_ FILE with the path to your key file:

gcloud auth activate-service-account —-key-file="PATH_TO_KEY_FILE"

If the command was successful, you should now be able to generate access tokens for accessing the
Google Cloud API and translating text from the Localization Panel.

To create a new access token, run the following command:

gcloud auth print-access-token

In the console/terminal, you should see a long string of characters which is your new Google API
Access Token. The token is only valid for one hour from the time you created it.

Setting EasyTalk to use Google Cloud Translation

In the EasyTalk Node Editor, go to the Language Menu and choose “Localization. .. ”.

If Google CLI is included in your system’s PATH, you don’t really need to enter a Access Token into
the Localization Panel, since EasyTalk is designed to automatically retrieve tokens as needed once

111

Keys

Service account keys could pose a security risk if compromised. We recommend you ave
Cloud here [£.

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies [£.

Learn more about setting organization policies for service accounts [

ADD KEY -

Create new key

Key Key creation date

Upload existing key

Figure 97: Adding a new Google Cloud service account key

setup is complete. But if that automatic process doesn’t work, you can paste the Google access token
into the Access Token field in the Localization Panel, then EasyTalk will use this access token to access
the Google API when doing translations.

Access tokens expire one hour after they are created, so if you are manually pasting an access token,
you will need to generate a new one if it’s expired and you want to use the translation feature.

You will need to set the project ID in the Localization Panel to match the project ID of your Google
project in order to use the automatic translation feature.

The project ID can be found by clicking in the Google Cloud project dropdown, and it will be displayed
next to the project name.

Lastly, make sure your original language is set to the language your dialogue text is written in, and
check all of the toggles for whichever languages you want to translate to.

Once you have everything set up, just click on the “Translate” button and all of the lines of dialogue,
character names, and option text will automatically be translated to the languages you enabled in the
Localization Panel! :smile:

Make sure to save your Dialogue Asset after you use the translation feature, otherwise your translations
will be lost!

112

Original Language: English- English{en) = | X
Sepedl| - Sesotho (nso)
Serblan - cpnckm |esuk (sr)
Sesotho - Sesotho (st)
Shona - chiShona (sn)
Sindhi - 43¢ (sd)
Sinhala (Sinhalese) - Soea@ (si)
Slovak - slovenéina (sk)
Slovenian - slovenséina (sl)
Somali - Af-Soomaali (s0)
Spanish - Espanol (es)
Sundanese - Basa Sunda (su)
Swahili - Kiswahili [sw)
Swedish - Svenska (sv)
Tagalog (Filipino) - Tagalog (t1)
Tajlk - ToyuKRA (tg)
Tamil - sudlLf (ta)
Tatar - TaTapua (tt)

Talunn - Mewns Mta)

naFtVa)j2vmO0jf4Sab6lfgFl6Yq9v Select File

my-project-id-419521 Translate

Create Localization File...
Import Localizations...

Figure 98: Translation Settings in the Localization Panel

113

Settings

Character Libraries

G)q Character Library (Character Library)
{}

Character Definitions
= default
Character Mame default

- default

lean 1D default

MOME

Partravals

- default

Portrayal 1D default

Uit Target D center
LOOP
16

« body

Gibberish Clip 2

Figure 99: Character Libraries

Character Libraries are used to define characters which can be used across Dialogue assets. Each
character can be configured to have its own set of icons or “portrayals”, which can be easily displayed
in the UI when appropriate.

114

Creating a Character Library

To create a new Character Library, right-click in the Project Window and choose ‘Create -> EasyTalk
-> Settings -> Character Library’.

Using a Character Library

In order to use a character library, you should select the Dialogue Registry you're using and set the
Character Library you want to use.

Character Definitions

Each character you define in a character library provides settings for icons, “portrayals”; and gibberish
audio.

Icons Icons are useful for displaying a small visual representation of a character in a Dialogue Display’s
Icon Panel.

Any icon can be composed of either a singular image, or alternatively, a collection of sprites which can
be used to animate the icon. If multiple spirtes are used, you can set up an animation mode which
determines how the icon will cycle between sprites.

Each character can have multiple icons defined for it. For example, you may want to have an icon for
when the character is happy, and have another for when they are sad. To do this, you should set the
Icon ID for each icon to a meaningful value.

In the node editor when you click on the settings button of a Conversation Node, you can choose which

icon to display for the selected character when that dialogue is displayed.

Portrayals Portrayals are similar to icons, in that they display an image, or an animated series of
images for a character; however, they are different in that they may target a specific Character Sprite
panel, with the sprite mode set to “PORTRAYAL”.

Portrayals are especially useful for creating visual novels.

To display a particular character’s portrayal image on a specific Character Sprite Panel, you should
specify the sprite panel’s Display ID as the Default Target ID of the portrayal.

Gibberish If you are using a Conversation Display which displays text one word, or one character, at
a time, you can configure your characters with different audio files for “gibberish”; or arbitrary sounds
which will play when they are speaking.

Just click on “Override Gibberish” in the Audio section of a Character Definition and you can add new
Aduio Clips for gibberish audio by clicking on the + button.

Dialogue Settings

Localizable Languages

The Localizable Language asset to use. Defines available/supported languages.

115

alk Dialogue Settings |

nt

LATE_BEFORE_V,
syTalk Dialogue R

Figure 100: Dialogue Settings

Language Font Overrides

The Language Font Overrides asset to use. This asset specifies which font to use when the language is
switched.

Translation Eval Mode

Specifies the order in which variables are translated in dialogue.

« TRANSLATE_BEFORE_VARIABLE_EVALUATION: Translates text before resolving variable
values within the text. Given a variable called ‘numApples’ used in the text, ‘T have (@numApples)’,
this exact text would be looked for as a match in the dialogue’s localization table.

e TRANSLATE AFTER_VARIABLE EVALUATION - Translates text after resolving variable
values within the text. Given a variable called ‘numApples’ used in the text, where numApples
current value is 3, ‘T have (@numApples)’ would be replaced by ‘I have 3 apples’ when looking for
a match in the dialogue’s localization table.

Dialogue Registry

The Dialogue Registry to use. The registry contains defintions for global variables, as well as a reference
to the character library.

EasyTalk Editor Settings

The EasyTalk Editor Settings asset stores settings used by the Node Editor and other editor-only
features of EasyTalk.

Volume Settings

Default Volume The default volume to use in the node editor when previewing audio on conversation
nodes.

Autosave Settings

Autosave Mode

116

Default Volume

Autosave Settings
MOME

Localization Settings
Default Original Langu
Default Font

e Translate Proj

Default Localization Languages

Fine Tuning

Figure 101: Editor Settings

117

¢ NONE - Disables auto-saving in the node editor.

o« TIMED - Automatically saves Dialogues in the node editor every certain number of milliseconds.

e ON_CHANGES - Automatically saves the Dialogue in the node editor whenever a change is
made (this is not recommended as it can cause significant lag).

Stylesheet Settings
Defines the stylesheets to be loaded for the node editor UI.

Localization Settings
Default Original Language The ISO-639 language code for the original language the game’s
dialogue is written in.

Default Font The default font to use for Ul components in the node editor.

Google Translate Project ID The Google Translate Project ID to use when using Google cloud
translation services for automatic translation.

Localizable Languages The Localizable Language asset to use. Defines available/supported lan-
guages which are made available for selection in the node editor.

Language Font Overrides The Language Font Overrides asset to use. This asset specifies which
font to use in the node editor UI when the language is switched.

Default Localization Languages Defines which languages should be translated to whenever using
automatic Google cloud translation, or when creating localization files.
Fine Tuning

UT Reload Session Delay A delay for reloading the node editor Ul after a Unity session reload.
Adjusting this can result in faster load times, but setting the value too low can cause unexpected bugs
and timing issues.

Dialogue Load Delay A delay for loading dialogue into the node editor, after the UI has loaded.
Setting this value too low can cause timing issues and inconsistencies.

TextMeshPro Settings

Auto Detect TMP When set to true, the system will attempt to automatically detect a TextMesh
Pro installation, and adjust the EasyTalk installation accordingly.

Dialogue Registry

The Dialogue Registry to use in the node editor. The registry defines global variables and has a
reference to the primary character library.

Extending Easytalk

Dialogue Listeners

Dialogue Listeners can be used to easily add your own components and scripts which listen and respond
to dialogue events as they are processed by your Dialogue Controllers.

118

For example, if you want to implement your own dialogue UI from scratch, but not worry about the
underlying logic of the dialogue flow and nodes, you can just extend the DialogueListener class and
override the relevant methods, then add it as a listener on the Dialogue Controller(s) you're using. As
the DialogueController processes your Dialogue asset, it will automatically call the methods of your

Dialogue Listener when appropriate to do so.

Of course, you can use Dialogue Listeners for all sorts of other creative uses, it’s really only limited by

your imagination! :smile:

Example

In the example below, we create new class called CharacterNameDisplay which overrides the OnDis-
playLine() method of the DialogueListener class to set the text of a Unity Text UI component to the
translated name of the character who is currently speaking.

using EasyTalk.Controller;
using UnityEngine.UI;

//Text UI component to display a character name on

[SerializeField] private Text text;

public class CharacterNameDisplay :

{

DialogueListener

public override void OnDisplayLine(ConversationLine line)

{

//Set the text to the translated character name
text.text = line.TranslatedCharacterName;

Defined / Overridable Methods

Method Name

Description

OnContinue()

OnDisplayOptions(List<DialogueOption>
options)
OnOptionChosen(DialogueOption option)

OnDisplayLine(ConversationLine
conversationLine)
OnDialogueEntered (string entryPointName)

OnDialogueExited(string exitPointName)
OnExitCompleted()

OnStory (string storyText)
OnVariableUpdated(string variableName, object
value)

OnCharacterChanged(string oldCharacterName,
string newCharacterName)

Called whenever the dialogue continues on to the
next line.

Called whenever dialogue options are to be
presented.

Called whenever an option is chosen from the
currently presented list of options.

Called when a line of dialogue is to be presented.

Called whenever a dialogue is entered (when
playback begins).

Called whenever a dialogue is exited (when
playback ends).

Called at least one frame after a dialogue is
exited.

Called whenever a story node is encountered.
Called whenever a dialogue variable value is
updated.

Called whenever a character change is detected.

119

Method Name

Description

OnAudioStarted(ConversationLine line)
OnAudioCompleted(ConversationLine line, bool
forceStopped)

OnActivateKey (string key)

Wait(float timeInSeconds)
OnConversationEnding(ConversationLine line,
Node nextNode)

OnNodeChanged(Node node)

OnPause(string signal)

OnAppendText(string text)

OnExecuteAsyncNode(AsyncNode node)

OnWaitingForNodeEvaluation(Node asyncNode)

OnNodeEvaluationCompleted(Node asyncNode)

Called whenever audio starts playing for a line of
dialogue.

Called whenever audio stops playing for a line of
dialogue.

Called whenever a key tag is present in a line of
dialogue.

Called whenever the dialogue encounters a wait
node.

Called whenever the last line of dialogue in a
conversation node is reached.

Called whenever dialogue playback moves to the
next node.

Called whenever a pause node is reached during
dialogue playback.

Called whenever text is to be appended to the
current dialogue’s conversation text.

Called whenever an async node is encountered
and needs some external class to handle its
execution.

Called just before an asynchronous node is
executed to notify listeners that the dialogue is
about to enter a waiting state.

Called whenever an asynchronous node’s
evaluation/execution has been commpleted.

TextMeshPro Support

EasyTalk supports using regular Unity Text, as well as TextMeshPro Text components.

By default, EasyTalk attempts to detect TextMeshPro automatically by looking for ‘TMP Settings.asset’
in ‘Assets/TextMesh Pro/Resources’; however, in some Unity Versions and projects, TextMeshPro is
installed as a package (under ‘Packages’), and auto-detection will not work. For this scenario, you can
still use TextMeshPro, but you will need to take the following two steps, in this order:

o Turn off TMP auto-detection in EasyTalk Editor Settings
¢ Add the TEXTMESHPRO_ INSTALLED scripting define symbol to the Project Settings

If you add the TEXTMESHPRO__INSTALLED scripting define symbol first and EasyTalk TMP
auto-detection is still turned on, the scripting define will automatically be removed, so make sure to

turn auto-detection off first.

Turning off Auto-Detection

TextMeshPro Settings

Auto Detect TMP

Figure 102: Turn off TextMeshPro Auto Detection in EasyTalk Editor Settings

120

Go to “EasyTalk /Resources/settings/” and select the EasyTalk Editor Settings asset. In the
Inspector, find the ‘Auto Detect TMP’ setting, and uncheck it.

Adding a Scripting Define Symbol

Supported URL schameas®

Shader Settings

Use platform defaults for ¢

Keep
Shader Variant

Define Symbols

TEXTMESHFR {STALLED

Copy Defines

G EIGE

Figure 103: Adding the TEXTMESHPRO_ INSTALLED Scripting Define Symbol

Open your Project Settings by going to ‘Edit -> Project Settings’ in the main menu toolbar. Select
‘Player’ and scroll down until you find the ‘Script Compilation / Scripting Define Symbols’ settings.
Click the + to add a new symbol, and in the field, type TEXTMESHPRO_ INSTALLED, then
click the Apply button.

121

	Getting Started
	Demos
	Demo 1
	Demo 2
	Demo 3

	Tutorials
	Tutorials

	EasyTalk Node Editor
	Hotkeys and Controls
	Viewport Controls
	Quick-Create Wheel
	Hotkeys / Keyboard Shortcuts

	Nodes
	Common-Nodes
	Entry Nodes
	Exit Nodes
	Conversation Nodes
	Append Nodes
	Option Nodes
	Option Modifier Nodes
	Story Nodes

	Flow-Nodes
	Jump Nodes
	Jump-In Nodes
	Jump-Out Nodes

	Path Selector Nodes
	Random Path Nodes
	Sequence Path Nodes
	Pause Nodes
	Wait Nodes
	Goto Nodes

	Logic-Nodes
	Boolean Logic Nodes
	Build String Nodes
	Compare Numbers Nodes
	Compare Strings Nodes
	Conditional Value Nodes
	Math Nodes
	Select Value Nodes
	Trigger Script Nodes

	Variable-Nodes
	Get Variable Nodes
	Set Variable Nodes
	Boolean Variable Nodes
	Float Variable Nodes
	Int Variable Nodes
	String Variable Nodes

	Utility Nodes
	Show Nodes
	Hide Nodes
	Player Input Nodes

	Variable Injection
	Example

	Special Tags
	Conversation Node Tags
	Append Tags
	Autoplay Tags
	Option Node Tags

	Global Variables
	Dialogue Registry
	Node Editor

	Dialogue Assets
	Creating a Dialogue Asset
	Editing Dialogue Assets

	Dialogue Controllers
	Playing Dialogue
	Controller Settings
	Dialogue Listeners
	Controller Events
	Dialogue Events
	Area Dialogue Controllers
	Setup
	Area Controller Settings
	Activation Settings
	Dialogue Listeners
	Controller Events
	Dialogue Events

	Accessing Variables
	Setting Variable Values
	Getting Variable Values
	Saving and Loading Variables

	Dialogue Displays (UI)
	Dialogue Display Settings
	Settings Asset
	Sub Displays
	General Settings
	Conversation Settings
	Option Settings
	Continuation Settings
	Dialogue Listeners
	Display Events
	Dialogue Events

	Components
	Conversation Displays
	Speech Bubbles
	Option Displays
	List Displays
	Scrollable List Displays
	Directional Displays
	Dialogue Buttons
	Continue Displays

	Layouts
	Directional Layouts
	List Column Layouts
	List Row Layouts
	Scrolling Layouts
	Customizing Layouts

	Styling
	The Style Manager
	Conversation Display Settings
	Option Display Settings
	Continue Display Settings

	Style Presets
	Creating Style Presets
	Changing Styles in Play Mode

	Color Themes
	Manual Style Changes
	Animation

	Player Input
	Custom Input Handling
	Input Handler Settings
	Input Manager Settings
	Input System Settings

	Localization
	Supported Languages
	Localizable Language Sets
	Languages

	Translation Libraries
	Translation Libraries

	Setting the Default Dialogue Language
	Setting the Writing Language in the Node Editor
	Setting the Language in the Localization Panel
	Changing the EasyTalk Editor Settings

	Changing Languages During Gameplay
	Language Font Overrides
	CSV Support
	Exporting CSV Files
	Importing CSV Files

	CSV Format
	Using Google Translation
	Setting up a Google Cloud Project
	Enabling Cloud Translation Services
	Set up a Service Account
	Create a Service Account Key
	Setting up Google CLI
	Setting EasyTalk to use Google Cloud Translation

	Settings
	Character Libraries
	Creating a Character Library
	Using a Character Library
	Character Definitions

	Dialogue Settings
	Localizable Languages
	Language Font Overrides
	Translation Eval Mode
	Dialogue Registry

	EasyTalk Editor Settings
	Volume Settings
	Autosave Settings
	Stylesheet Settings
	Localization Settings
	Fine Tuning
	TextMeshPro Settings
	Dialogue Registry

	Extending Easytalk
	Dialogue Listeners
	Example
	Defined / Overridable Methods

	TextMeshPro Support
	Turning off Auto-Detection
	Adding a Scripting Define Symbol

